
AD-A096 546 ANALYTIC SERVICES INC
ARLINGTON VA

F/S 5/1
RESOURCE ALLOCATION METHODOLO6Y FOR AIR FORCE R&D PLANNING. (U)
JUN 80 G COOPER, S ADAMS. J CLARY J PERLIS F49620-77-C-0025

UNCLASSIFIED ANSER-TUN-80-1 NL

IEEEEIIIIIIEI7
EEEEEEIIIIEEI
EEEEEEEIIEIIEE
EIIIIEEEIIEEEE
EEEEEIIEEEEEEE
mEEEEEE~tmhEEEEE

Ile

DTIC

TACTICAL DIVISIL NT

B- ESOURCE ALLOCATION BETHODOLOGY
FOR AIR f ORCE R&D PLANNING.

/JunW086

G ./ooperL!rojec Leader
~S. Adams
1iJ. /Clary/

CApproved by

C.Foreman, Division Manager

[pprve opic relese.

distributio unli ite

riIS GPA&I

PTrC TAR E
Unnznoi-rv'.A El

- - an er 400 Artrmy-Navy Driveli Asllngtafl,Vh0llAs 22202

Dist

PREFACE

During fiscal 1979, the Director of Program Integration,

AF/RDX, tasked ANSER to identify and develop a methodology

for allocation of funds among Air Force research, develop-

ment, and acquisition programs. This report, which consists

of four volumes (bound as one document for convenience of user),

describes work accomplished in response to that tasking and

discusses the resulting resource allocation methodology (RAMI).

Although RAM has been developed and tested successfully, our

experience to date with its use suggests that its future appli-

cation will be limited unless a method for quantitative evalu-

ation of programs can be devised and implemented.

I

RESOURCE ALLOCATION METHODOLOGY FOR
AIR FORCE R&D PLANNING

Volume 1: Summary Report

L1

CONTENTS
Volume 1

I. INTRODUCTION 1

II. THE RESOURCE ALLOCATION METHODOLOGY 3

A. Our Approach 3
B. The Allocation Methodology 4
C. Computer Implementation 6

III. APPLICATIONS OF THE I.-§'HODOLOGY 9

A. Large-Scale Applications 9
B. Special-Purpose Application.,s 9

IV. CONCLUSIONS 11

ii

I. INTRODUCTION

This volume is one of four that document ANSER's develop-

ment of a resource allocation methodology (RAM) for the

Director of Program Integration, AF/RDX. Each volume empha-

sizes a particular aspect of our research and can be read

independently of the others. Volume 1 is an overview of the

work accomplished. Volume 2 describes the RAM technique

itself and how to use the general-purpose computer programs

that incorporate it. Volume 3 discusses how to use the

interactive computer program developed for use of RAM within

AF/RDX. Volume 4 reports on tests made to determine the

computational performance of RAM.

In fiscal 1979, AF/RDX requested that ANSER conduct an

investigation of analytic techniques that could be used

to allocate resources and, if a suitable mpthodology was

found, we were to develop it. The need for such a metho-

dology stems partially from the large number of program

elements (PEs) that planners must consider. For example, a

single budget could contain over 300 PEs, each of which is

proposed at three or four alternative funding levels, called

decision packages. Each decision package, which represents

some variation on the content of the PE, contributes more or

less to the achievement of associated objectives. Objectives
include operational needs identified by Mission Area Analysis

and other goals that Air Force officials may establish.

Furthermore, the Program Objectives Memorandum (POM) is to

plan for a 5-year period, which means considering multiple

fiscal constraints. Therefore, a large number of factors

must be considered.

1

I

The basic resource allocation problem can be stated as

two questions: At what decision level should each PE be

funded to achieve the greatest contributions to the specified

objectives while recognizing fiscal constraints over a period

of several years? As the availability of fiscal resources

increases or decreases, how should the investment strategy be

changed to maintain the greatest overall contribution?

We believe we have developed a unique and potentially

useful methodology for formulation of investment strategies.

However, use of the methodology requires identification of

the objectives of interest and evaluation of the contributions

of program alternatives to achievement of those objectives.

Unless these requirements can be met in a practical way,

application of the methodology will be limited. AF/RDX has

asked us to address this problem in subsequent research.

Chapter II of this volume summarizes our approach to develop-

ment of the methodology, Chapter III describes how the

resource allocation methodology has been and can be used. In

Chapter IV, we give our conclusions concerning the utility of

the methodology and discuss requirements for its further

implementation.

2

WNW

II. THE RESOURCE ALLOCATION METHODOLOGY

A. Our Approach

Our approach to the development of a resource allocation

methodology recognizes the multiplicity of objectives that

must be considered and their frequently conflicting nature.

Furthermore, the benefit from achievement of one objective

can rarely be estimated quantitatively in the same terms as

thcse describing other benefits. Therefore, our problem was

to develop a methodology that could attempt to simultaneously

maximize several incommensurable benefits. This approach

contrasts with techniques that attempt to reduce the problem

to one in which a single benefit measure is used to develop

an investment strategy. One accepted single-benefit tech-

nique ranks alternatives by their ratios of benefits and costs;

alternatives are then deleted in ascending order from the

bottom of the list until the specified budget constraint is

no longer exceeded. Unfortunately, the aggregate benefit of

the retained alternatives may not be the largest obtainable.

Consider, for example, the four alternatives in Table 1, which

we ranked in order of benefit/cost ratio. At a sample budget

of 18 units, only the first two projects could be funded for

a total benefit of 9. However, if the third is substituted

for the first, the cost of 17 would be within the allowable

budget and the benefit is 10, a number greater than the

original allocation.

A second problem exists with use of a single benefit/cost

ratio if the cost is obtained by summing multiyear costs,

since infeasible cost profiles could easily result. In other

words, the sum of the costs of the projects in an R&D pro-

gram may not violate the sum of the fiscal constraints in

various years, but in a given year, those costs could indeed

violate the fiscal constraints.

3

TABLE 1
SAMPLE ALTERNATIVES BY BENEFIT/COST RATIO

Alternative Cost Benefit Benefit/Cost Cumulative Cost

1 8 6 3/4 8

2 5 3 3/5 13
3 12 7 7/12 25

4 15 5 1/3 40

B. The Allocation Methodology

The resource allocation methodology that we selected after

investigation of several techniques employs goal programming.

Use of the technique requires definition of a set of goals

and their classification into subsets having different prior-

ities for achievement. For example, as a class, operational

goals may be afforded a higher priority than that afforded

programmatic goals. Furthermore, goals within each subset

will usually differ in importance. Consequently, the im-

portance of each goal within every subset must be specified.

Specification of the relative priorities of the subsets and

the relative importance of the goals in each subset permits

use of a priority goal structure for development of an invest-

ment strategy. This procedure always finds the investment

strategy that most closely satisfies the first-priority goals.

The procedure then attempts to satisfy the second-priority

4

goals without degrading the achievement of first-priority

goals. This process continues for all successive priority

levels. (See Volume 2 for additional explanation of the

process.)

This procedure adequately represents all important aspects

of the allocation process. It provides substantial flexibility

in its representation of the preferences of the decision-maker

and in its recognition of the complex, multigoal nature of

the decision. Through use of the priority goal structure

most practical considerations can be represented. A need to

comply with agreements to pursue certain programs can, for

example, be represented as a Priority 1 goal. Goals not

quantifiable in the same terms can be represented on different

priority levels, which precludes any need to compare "apples

and oranges". Any type of goal can be incorporated into the

structure as long as the user of the method can evaluate the

alternatives with respect to it.

We selected an algorithm for determination of the preferred

investment strategy that is an adaptation of a technique de-
1

veloped by Petersen. It ranks the alternatives according

to an average benefit/cost ratio and then improves the

solution by examining various exchanges between the unfunded

alternatives and those initially funded. In other words, it

finds a workable solution and proceeds systematically to im-

prove it. (See Volume 2 for complete description of the

algorithm.)

1Petersen, Clifford C., "A Capital Budgeting Heuristic
Algorithm Using Exchange Operations," AIIE Transactions,
VI, 2 June 1974.

5

The technique does not examine all possible combinations of

alternatives. Instead, it uses deductive rules to eliminate

combinations that need not be considered, realizing substantial

efficiency. Observe that the algorithm begins with the type

of strategy that results from the techniques discussed in

Section II.A and then improves it.

C. Computer Implementation

We wrote two types of computer programs to solve resource

allocation problems. The first type consists of general-

purpose representations of the methodology, called RAM/GP

and RAM/VM. RAM/GP and RAN/VM could be used with any kind

of resource allocation problem for which data are available.

RAM/GP contains the methodology described in the previous

section in which the user wishes to come as close as possible

to the specified goals. In some cases, however, the user

cannot, or may not want to, specify an explicit objective

value as a goal. The user may, instead, simply wish to

maximize the contributions made to all goals, which is possible

using RAM/VM. This form is equivalent to the previous one in

which goals are simply set at unreachable levels. In fact,

both programs would find the same solution. However, use of

RAM/VM can be more efficient if the less complex data it

requires are available. Volume 2 describes both RAM/GP and

RAM/VM.

The second type of program is a special-purpose program.

It consists of RAM/VM imbedded in a larger, user-interactive

program, and was designed to demonstrate the day-to-day use

of the method by those responsible for formulating investment

strategies. The methodology is tied to the program element

(PE) data base used by AF/RDX. By operating a computer ter-

minal, a user obtains access to the data for the programs

6

V -h,

for which he has responsibility (and only those programs).

Then by following simple procedures in response to prompting by

the computer, the user can specify alternative budgets for

any number of years desired and receive, usually in seconds,

the alternatives to be funded that represent the best invest-

ment strategy. If he generates alternative strategies in

response to revised fiscal constraints, the results are

accumulated and displayed in the form of cost/benefit curves.

Hard copies of the curves are available as soon as the plots

are made. The program is special purpose because it was

designed for the type of hardware available at the AF/RDX

computer site (Multics computer system) and was tied to the

official PE data base as it existed in fiscal 1979. It demon-

strates the ease with which the methodology can be used to

examine the impacts of enhanced or decremented budget ceilings

on the investment strategies. by front loading (shifting

funds to earlier periods) or back loading (shifting funds to

later periods), the user can examine the impact of the resul-

tant investment strategies in terms of the impact of the

progress made toward selected goals. Such excursions make

the methodology useful for multiperiod planning on a quick-

turnaround basis. We describe this computer program in

Volume 3.

We tested the performance of these programs in a process

described in Volume 4, examining both the solution accuracy

of the programs and the time required to solve problems of

various sizes. However, because our methodology is so much

more efficient than other available techniques, it was difficult

to get a standard for judging the performance of our programs.

Testing of this kind is very expensive, and in many cases, the

only available commercial routine we could use to establish a

7

solution failed to reach a solution in a practical time. RAM/

GP provides practical solution times (on the order of a few

minutes) for problem sizes of 200 to 250 decision variables

(possible alternatives), while RAM/VM provides practical so-

lution times for larger problems. The practical problem size

limitation of the commercial routine was an order of magnitude

less and restricted our comparison tests to smaller problems

of approximately 45 variables. For problems of this size,

statistical analysis indicates a reasonable degree of con-

fidence that RAM results are optimal or near optimal. We

believe that the accuracy of results will hold for even larger

problems, although we have no statistical basis for that be-

lief.

8

III. APPLICATIONS OF THE METHODOLOGY

A. Large-Scale Application

We have been unable to apply the methodology on a large-

scale primarily because no institutionalized procedures exist

within Headquarters USAF for making quantitative evaluations

of R&D alternatives. Although at the outset of our work some

attempts to formulate and institutionalize such a process

had been made,* the process no longer exists.

B. Special-Purpose Applications

RAM has been used for allocating resources in a number of

special purpose applications. The methodology has been trans-

ferred to computers at the Aeronautical Systems Division (ASD)

where it has been used in a pilot study of avionics R&D pro-

grams, and where it will be used to allocate resources among

aeropropulsion R&D programs.

We have also used RAM within Hq USAF to assist in the

development of an armament functional area plan. This func-

tional area cuts across four mission areas: counterair,

close air support/battlefield interdiction, defense suppression,

and interdiction. We derived goals from appropriate Mission

Area Analysis tasks, e.g., targets of various types to be

destroyed in various weather conditions. These goals com-

prised the first priority level and were assigned the relative

importance identified in the MAA process. We also identified

a single goal at the second-priority level, namely to decrease

*This process is described in "Mission Area Resource Alloca-
tion for Air Force R&D," Defense Systems Management Review,
Volume 2, Spring 1979,

9

procurement spending where possible by competitive bidding.

This goal consumes R&D resources to fund multiple contractor

involvement in parallel RDT&E efforts.

We formulated funding alternatives that were associated

with a unique set of products (armament systems or subsystems)

completion dates, risk factors, and cost elements of the

decision package sets for the 19 program elements in the

functional area.

We determined the impact of each product on the ability

of the Air Force to meet the specified operational goals

using a linear measure of increase in force effectiveness.

Then, this contribution was enhanced or degraded, depending

on the timeliness of the product, in meeting the threat and

the technical risk involved in developing the product.

Summing the contributions of the products of each funding

alternative provided a linear index of value for each funding

alternative. We then introduced the procurement savings

(if any) produced by a funding alternative as a second-

priority goal.

We made a number of RAM runs representing excursions on

budget ceilings, and benefit/cost curves were produced. Re-

sults to date have been well accepted by the tasking office.

10

IV. CONCLUSIONS

The resource allocation methodology (RAM) that we de-

veloped can be used in the formulation of R&D investment

strategies (if a practical process for evaluation of alter-

natives can be devised) and in any type of resource alloca-

tion decision that must choose among discrete alternatives.

We believe that RAM is a unique technique that can reflect

the significant aspects of most allocation decisions. We

know of no other technique that formulates and solves the

allocation problem in the same manner as that used in RAM.

RAM can be refined and extended in several ways. For

example, additional work could produce a general-purpose

interactive program of the type demonstrated, but which allows

the user to work with more of the data base than the fiscal

constraints, e.g., to interactively change goals or costs

and evaluations of the alternatives. Also, an output pro-

cessor should be developed to interpret the changes in results

when running excursions on the budget ceilings. Such a

processor would highlight the impact on the goals that results

when running such excursions. These are essentially data

management or bookkeeping improvements, but they would en-

hance the utility of the method.

Also, while the RAM programs are sufficiently accurate

and efficient for the problems we envision, further research

could possibly provide some improvements in efficiency if

improved efficiency is required. We have found one technique

that could improve efficiency, but a major development and

test program would be required to verify its potential. An

improvement in efficiency could increase the effective pro-

blem size of RAM.

ii

Such improvements are of second-order importance; however,

the most significant problem in wide-scale use of RAM is the

lack of a procedure for evaluating alternatives. If it is

feasible to develop and implement such a procedure, we will

then be able to provide the decision-maker with an assurance

that the best possible strategy with respect to the specified

goals has been identified. This strategy will certainly not

replace the decision-maker; rather, it will assist him by

providing a strategy reflecting those considerations chosen

for explicit representation. It will provide the decision-

maker with more time to review the resource allocation and,

perhaps, to improve it further by applying his own expertise

on matters that have not been explicitly assessed.

12

RESOURCE ALLOCATION METHODOLOGY FOR

AIR FORCE R&D PLANNING

Volume 2: Methodology and Computer Programs

CONTENT S
Volume 2

Pagqe

I. INTRODUCTION...........................

II. THE RESOURCE ALLOCATION MODEL...............3

A. Mathematical Formulation of the Problem . . . 3
B. solution Algorithm.......................7

III. USING THE COMPUTER PROGRAMS...............11

A. Guide to RAM/VM.......................11

1. The Resource Allocation Problem 11
2. Data Input....................13
3. Solution Output......................13
4. Sample Problem 15
5. Limitations Due to Size of Problem 19
6. Computational Experience 20

B. Guide to RAM/GP.....................20

IV. COMPUTER CODES........................23

A. RAM/GP.............................23

B. RAM/VM.................................34

I. INTRODUCTION

This volume is one of four that document ANSER's de-

velopment of research and development (R&D) resource allo-

cation methodology (RAM) for the Director of Program

Integration, AF/RDX. Volume 1 summarizes the work and its

applications. Volume 2 describes the RAM technique and

how to use the computer programs that incorporate it.

Volume 3 describes additional software developed to demon-

strate the RAM technique, and Volume 4 describes the way in

which we tested the computational capability of the RAM pro-

grams. Each volume emphasizes a particular aspect of our

research and can be read independently of the others.

This volume concentrates on the technique we adopted to

solve the resource allocation problem and the associated com-

puter programs. In Chapter II, we describe what the computer

programs do in a mathematical sense, and in Chapter III we

describe how to use them. The reader who is not interested

in the underlying technical process can probably bypass

Chapter II and apply the programs using only the discussion

contained in Chapter III. However, some knowledge of com-

puter programming and mathematics is necessary. Chapter IV

contains the computer codes for these programs.

In the discussion, we frequently use the vocabulary of

the R&D resource allocation problems for which we developed

the technique. However, the procedure and computer programs

are applicable to a wide range of mathematical optimization

problems as described in Chapter II. Although the reader

may have to translate our vocabulary to that of his problem,

we hope that this volume can be used as a manual for other

applications.

&l1

II. THE RESOURCE ALLOCATION MODEL

In this chapter, we describe the role of the RAM

(Resource Allocation Methodology) computer programs. The

discussion is necessarily technical. The reader who is not

technically inclined can omit this chapter if he wishes

merely to apply the technique, although a scan of at least

the first part of Secion II.A, which describes our model

of the decision process, is recommended. Section II.B

contains a summary of the central RAM algorithm.

A. Mathematical Formulation of the Problem

In the RAM, the decision process involved in allocating

resources is modeled as a mathematical optimization problem:

the packing problem. This problem can be explained with a

physical analogy in three dimensions. Imagine a large box

that must hold a number of smaller boxes of varied sizes.

Each small box has an associated measure of value, and not

all the small boxes will fit simultaneously in the large box.

The problem is to pack the large box so that the total value

of small boxes contained within is maximized. The three

dimensions of this problem correspond to the length, width,

and depth of the large box. Note that each small box uses

up some of each of these dimensions. In the R&D resource

allocation problem, for example, the number of budget periods

considered corresponds to the dimensionality of the associat-

ed packing problem. Each R&D project alternative (or each

small box) potentially uses up some amount in each budget

period and some associated measure of benefit.* The problem

*See Volume 1 for a discussion of benefit measures and other
aspects of this problem.

3

then becomes to maximize the total benefits subject to the

budget constraints.

This model of the decision process has three main com-

ponents. First, there is a set of discrete alternatives

that must be selected on a yes or no basis. They are

represented by decision variables whose values, typically

0 or 1, correspond to nonselection and selection, respective-

ly. The solution algorithm determines these values. Second,

there is an index representing the degree of effectiveness

that results when a particular alternative is selected.

Finally, there is a measure of the resources that must

be consumed in any dimension (such as budget periods) to

accrue these benefits. We normally refer to the resource

consumption as a "cost", although these resources may not

be dollars.

The basic multidimensional packing problem can be further

defined as follows:

Let Z represent the total achieved system effectiveness

(benefit)
n

Maximize Z = E A.X.
i=l

Subject to:

n
E Ci :5 bj j=l,...,M

i=l 1) 1- J

Xi 10-11 Vi

where:

Xi is a decision variable taking on a value of 1

if the ith option is in the solution, and 0
otherwise.

4

A. is the effectiveness index (a linear mea-
1 sure of benefit) of the ith option.

C.. is the cost of the ith option with respect
13 to the jth dimensional constraint.

b. is the maximum amount of resources avail-
3 able in the jth dimension.

In many cases, this would be a satisfactory representa-

tion of a resource allccation decision process. However,

for R&D dnd perhaps many other resource allocation problems,
e

the decision is substantially more complex because it must

be made with respect to many objectives or goals. Further,

the decision-maker may decide that some goals have a higher

priority than others. To reflect these very real complexi-

ties, we extended the multidimensional packing problem.

Suppose system performance must be measured against Mr

objectives (goals) of which goals 1 to M1 are in the first

priority level, goals (M1 + 1) to M2 are in the second pri-

ority level, and so on. First-priority goals must be

satisfied as far as possible before other goals can be satis-

fied. Furthermore, goals at the second priority level can

be satisfied only if their satisfaction does not degrade the

already achieved goals and so on down the line. Each priority

level comprises a vector element in the achievement function.

Thus we write:

M1M Ni

Minimize Z = k=M (r-)+1

Subject to: n
SAikXi + N = Gk k=l,...,M ri=lii k k

5

n
Z C.. x, < b j=I,...,M

i~l 1J 1 -]

X. E {0-1} Vi1

where:

X. is a decision variable taking on a valueof 1 if the ith option is in the solution,

and 0 otherwise.

Aik is the effectiveness index of the ithoption relative to the kth goal.

Gk is the desired effectiveness against the
kth goal. Gk > 0

Nk are negative deviation variables indicat-
ing the amount by which a solution fails

to satisfy the kth goal.

Wk is the weight (relative importance) attached
to satisfying the kth goal. These can be
viewed as penalty factors. If we fall short
of the kth goal by 2 units, the associated
element in the achievement vector (to be
minimized) is increased by 2 Wk units.

Cij is the cost of the ith option in the jthdimension (e.g., budget period).

This formulation, called goal programming, is distin-

guished by the form of the objective function, which minimizes

the deviation from specified goals. It also contains a set

of weighting factors, 1Wk1 , which allow the goals on each

priority level to be given a relative importance.

It is not always desirable or possible to specify ex-

plicit, quantitative goals. Instead, one may simply wish to

find the resource allocation that maximizes the contributions

TE

of the chosen alternatives with respect to all the goals.

This is equivalent to the previous formulation in which all

the goals have been set to a level higher than that obtain-

able; that is, where:

n

Gk > ikXi k=l,... r

This method is called a vector maximization formulation of the

decison process.

Goal programming and vector maximization formulations

are fundamentally related, and so their respective programs,

RAM/GP (goal programming) and RAM/VM (vector maximization),

are very nearly the same. The solution algorithms, the

means of determining the Xi, are the same. We simply obtain

certain efficiencies in using RAM/VM by recognizing in

advance when a maximization model, rather than one in which

explicit goals are required, is the best model of the decision

process.

One additional refinement of the decison process is in-

corporated in both RA.M/GP and RAM/VM. The subsets that

contain mutually exclusive alternatives are incorporated in

the solution procedure. In other words, alternatives may

be formed into groups, and no more than one can be in the

solution. This arrangement models the case in which the

decision is to determine, for many programs, which of

several predefined alternatives should be selected.

B. Solution Algor.thm

The decision models chosen can be adapted to various so-

lutions by a wide range of integer programming techniques.

In this class of problems, however, the analyst must choose

7

an acceptable tradeoff between true optimal solutions, pro-

blem size, and run-time considerations. Very often, a search

for a true optimal solution using one of the classical in-

teger programming techniques results in impractical computer-

resource requirements for a problem of any real size. The

technique employed in RAM to solve the goal programming and

vector maximization packing problems previously defined is

based on a variant of the direct-search technique developed
by Clifford Petersen at Purdue University. 1 Petersen's

method performs to well within the margin of data uncertainty

for the R&D resource allocation problem we addressed, while

allowing large problems to be solved relatively quickly with

very small demands on computer hardware resources. (See

Volume 4 for details on the results of a series of test

runs made to ascertain RAM performance characteristics rela-

tive to certain other techniques.)

The steps for completing the RAM/GP, RAM/VM algorithm are

as follows:

1. Compute for each R&D alternative i, its mean proportionate

demand on budget funds, Ri, where

m
Ri = E C ij/b.

j-l '

m

2. Compute the relative independent benefit/cost ratio vec-

tor for each alternative, AHi, where

M ~ Mr
A-Hi [WK Aik''' WK Ai

1__ K=M(n-_) + 1

Ri Ri
11

Petersen, Clifford C., "A Capital Budgeting Heuristic Al-

gorithm Using Exchange Operations," AIIE Traneactions, VI,
2, June 1974.

8

3. Pick for each alternative group (subset of mutually

exclusive alternatives) the R&D alternative with the

highest value .. Place these alternatives in the

"in" set. Rank in descending order of xi values.

Place the remaining alternatives in the "out" set.

4. Delete alternatives from the bottom of the "in" set

until budgets are not exceeded in all budget periods.

Place deleted alternatives in the "out" set. If problem

requires vector maximization formulation go to 5a. If

problem requires goal programming formulation go to

5b.

5a. Compute A. = A i R. for all alternatives. Rank the
"in" set in order of increasing i values. Rank the

"out" set in order of decreasing A. values.1

6a. Subject to dominance rules deriving from the ranking,

find the best exchange (2-for-i or 1-for-l) between

the "out" set and the "in" set. If no such exchange

improves the solution, go to step 8. (Exchanges must

preserve budget feasibility).

7a. Rerank the new "in" and "out" sets as in steps 5a and

6a.

8a. If any funds are left, try to include some level of

any unfunded alternative. This is called "Fitback".

9a. STOP

5b. Compute provisional achievement of goal k; 9k for all

goals. For each variable in the solution at the Pri-

ority 1 level, compute Aik, the contribution of variable

i to the satisfaction of goal k.

9

let Qik =max (0,(aik + Gk -9)

then let Aik = min (aik, Qik)

Then compute the total weighted contribution of variable

i; J. for the variables in the solution1

M

Wk A ik'.., r WkA ik=l k=M (r-l) +1i

Rank the "in" set in order of increasing . values.
1

6b. Subject to a weakened set of dominance rules, find the

best exchange (2-for-l or 1-for-l) between the "out"

set and the "in" set. To test an exchange for pro-

fitability, remove the "in" set variable(s) in its

solution, insert the "out" set variable(s) in its

place, and an Ti value for the new variables as was

done in step 5. Compare .s. (Exchanges must main-1
tain budget feasibility.) If no profitable exchange

is found, go to step 8b.

7b. Go to step 5b.

8b. If any funds are left, try to include some level of

any unfunded alternative (Fitback).

9b. STOP

10

III. USING THE COMPUTER PROGRAMS

In this section, we describe how to use the RAM/VM and

RAM/GP computer programs. These programs solve a resource

allocation problem with multiple, prioritized objectives

in which constraints are placed on resource use over time.

RAM/VM selects the set of alternatives that maximizes

the contributions toward the objectives within resource

limitations. Most of our experience to date has been with

RAM/VM because of its easy application to existing data.

Consequently, we devote most of the discussion to this

formulation. Because RAM/GP is used in a very similar fash-

ion, we confine our discussion of this formulation to the

areas in which it differs from RAM/VM.

These programs are described as being in a free-standirc

mode, which we used. They are easily imbedded in an inter-

active program for repetitive use. In fact, we have done

this with RAM/VM to demonstrate the process. However,

because this demonstration program is useful only on a par-

ticular computer and with particular terminals, it is

described in Volume 3. RAM/VM and RAM/GP are more general.

They have been coded in FORTRAN for use on the Multics

computer system, as installed on the Honeywell Series 68/

Level 60 computer. Modifications to the coding may be re-

quired in the input/output, load/compile, and execute job

control language for use on other computing systems.

A. Guide to RAM/VM

1. The Resource Allocation Problem

The RAM/VM program is designed to assist the decision-

maker in allocating resources to alternatives in cases where

more alternatives exist than can be supported by available

1i

resources. Although the problem is quite general, we can

describe it in terms of an R&D project selection problem.

Each element of the R&D program can be selected at no more

than one of a number of predefined, alternative funding

levels. Each funding level consumes a different amount of

resources (dollars) in each of several budget periods and

results in outputs that differ in the benefits received.

Benefits reflect the contribution of each alternative to

each objective. Benefits measured by the user are used as

inputs to this computer program. The objectives of the re-

source allocation process must be organized into one or more

prioritized groups. Within a group, a relative weighting of

the objectives may be specified, for example, in order of

their relative importance. Finally, resource constraints

must be specified for as many budget periods as exist, and

the cost of each alternative in each period must be provided.

RAM/VM uses a ranking technique in Phase 1 to obtain an

initial feasible solution and then in Phase 2, tries to im-

prove this initial solution through a series of exchange

operations.* This approach is based on Petersen's Capital

Budgeting Heuristic Algorithm.2 The program attempts to

maximize (with no upper limit) the total achievement value

of all objectives at each priority level. The Priority 1

objectives are maximized first, and the objectives associated

with each successive priority level (if any exist) are then

maximized if the achievement of preceding higher level ob-

jectives is not degraded. To maximize the objectives, RA/VP

2Petersen, Clifford C., "A Capital Budgeting Heuristic
Algorithm Using Exchange Operations," AIIE Transactions,
VI, 2, June 1974.

*See Section II.B for description of ranking and exchange
techniques.

12

selects no more than one alternative from each group (mutually

exclusive) such that the total measurable benefit (at each

priority level) is maximized (subject to the availability of

required resources). The alternatives are assigned a value

of 1 if included in the solution, 0 if not.

2. Data Input

RAM/VM uses formatted READ statements to input data from

a file assigned to logical unit 10. Table 1 identifies the

required input to RAM/VM and the corresponding data formats.

A brief description of each data item is also included.

Note the flag, IGS. This flag is set equal to 1 if

some alternative group exists that must be represented in the

solution. For the mutually exclusive alternative groups,

which requirp that no more than one alternative be selected,

the IGS set equal to 1 will require that exactly one alter-

native be selected from each alternative group contained

in the Priority 1 objective. This Priority 1 objective

must be of the form: Max:.mize

I Ai Xi
i

where A. is set equal to 1 for alternative i if its associated

alternative group must be included in the solution, and A. is
set equal to zero otherwise. Additional comments on the use

of IGS are provided in Section III.A.4.

3. Solution Output

The output from RAM/VM is stored in a file assigned

to logical unit 8 in a sequential format. "FILEOUT" is the

name assigned to the output file by RAM/VM as currently

implemented on Multics.

13

p - ~ .t A.- -. & a . t.-4 ______________________________________

TABLE 1
INPUT DATA FORMATS FOR RAM/VM AND RAM/GP

Card Data Format Description Comments

I NVAR 15 The number of 0-1 variables
(total of all alternatives)

NG 15 The number of objectives

NP 15 The number of priority levels

NPER 15 The number of budget periods
NGR 15 The number of mutually exclusive

alternative groups

IGS 15 A flag, when set to 1 indicates the
presence of alternative groups that
must be funded at a nonzero level

2 - a W(J) 15 The weighting factor associated Input as (W(J), PR(J), J = 1, NG)
with objective J

PR(J) 15 The priority level that includes
objective J

(a + 1) - b C0, L) 10F8.0 The cost of variable I in For each budget period I, input
budget period I as (C(, I), I =1, NVAR)

(b + 1) - c IGR(I) 1615 The alternative group that Input as (IGR(1), I = 1, NVAR)
contains variable I

(c + 1) - d ILEV(I) 1615 The funding level within IGR(I) Input as (ILEV(I), I = 1, NVAR)
represented by variable I

(d + 1) - e B(L) 10F8.0 The budget upper bound for period I Input as (B(L), I = l, NPER)

(e + 1) - f A(I) 10F8.0 The contribution of variable I to For each objective, input as
the achievement of an objective (A(I), I = 1, NVAR)

(f + 1) - g RHS(J) 10F8.0 The desired achievement value Input as (RHS(J), J = 1, NG)
of each goal or objective

*RHS(J) is input for RAM/GP only.

14

"FILEOUT" provides the initial solution obtained by

RAM/VM under Phase 1 and the final solution obtained under

Phase 2. The results shown are the variables contained in

the solution and the corresponding alternative group number

(mutually exclusive group) and funding alternative number

(alternative within the associated group), the achievement

vector for each priority level, and the slack (or unused

resources) remaining in each period.

4. Sample Problem

Table 2 is a sample data file for RAM/VM, which is set

up in the format identified in Table 1. Line (1) sets the

parameters for the problem. There are nine 0-1 variables

(total number of alternative groups) (NVAR=9), two objectives

(NG=2), one priority level (NP=I), three time periods (NPER=3)

and three alternative groups (NGR=3). The flag, IGS, is set

to zero (IGS=O), indicating that for this problem no alter-

native groups need be represented in the solution.

TABLE 2
SAMPLE DATA FILE FOR RAM/VM (IGS = 0)

(1) 9 2 i 3 -'

(2) 1 1 2 1
(3) 32.0 2.000 0.')T) 1'.).)0 98.030 0.0')o 38.00r) 9).000 71.'Y)')
(4) 96.0-0 25.000 33.99) 35.100 72. O0 49.010 94. 000 92. 0') 9,S.0)"1
(5) 7.07.9 92.000 -il.J'Y) 84.00) 0. Or)0 0.000 26.000 I I .000 47.0'')
(6) 1 1 2 2 2 3 3 3
(7) I 2 I 2 4 1 2 3
(8) 200.000 190.000 2)0.)))
(9) 6;.090 13.000 32.0)) 2.000 30.03D 19.010 98.0o) .00') 3-. 017
(10 89.0) 71 .00, 06.)9 25.0900 33.000 35.010 72.00) 4- .0rr') 94. Or)

15

Line (2) shows that each objective is at the first

priority level (PR(J)=l), J=l,2); however, the second objec-

tive is shown to be twice as important as the first. There-

fore, the weighting factors are 1 for the first objective

(W(1)=l) and 2 for the second objective (W(2)=2).

Lines (3) thrcugh (5) identify the quantity of resources

required by each alternative during each time period.

Lines (6) and (7) identify which variables are associated

with each alternative group. In this example, there are

three such groups, the first group having two alternatives,

the second group having four alternatives, and the third

group having three alternatives.

Line (8) identifies the total resources available during

each of the three time periods.

Lines (9) and (10) identify the contribution of each

alternative to the achievement of the two objectives.

Mathematically, the sample problem is set up as follows:

Maximize

Z= 1 (69X +13X +32X +2X +30X+10X +98X +0X +38X
1 2 3 4 5 6 7 8 9

+ 2 (89X +71X +96X +25X +33X +35X +72X +48X +94X 91 2 3 4 5 6 7 8 9

(where Z is the objective function, and the coefficients re-

present the contribution of each variable (alternative) to

the achievement of each objective.)

Subject to the following resource constraints:

32X + 2X + 30X + 1OX + 98X + OX + 38X + 89X + 71X ' 200.0
1 2 3 4 5 6 7 8 9

96X + 25X + 33X + 35X + 72X + 48X + 94X + 92X + 96X ' 190.0
1 2 3 4 5 6 7 8 9

7X + 92X + 31X + 84X + OX + 90X + 26X + llX + 47X < 200.0
1 2 3 4 5 6 7 8 9

16

(where each equation represents one time period, the coef-
ficients identify the resources required by each variable

(alternative), and the righthand side provides the maximum
quantity of the resources available in each time period.)

The constraint:

X {0,} i=i,9
1

requires that an alternative either be selected or rejected.

The constraints:

X + X < 1 (Alternative Group 1)
3 2 +X3 + X + Xs + X6 < 1 (Alternative Group 2)

X + X + X < 1 (Alternative Group 3)
7 8 9

require no more than one alternative to be selected from

each alternative group. It is possible that no alterna-
tives will be selected from a given group.

The solution to this problem is shown in Table 3. Note

the improvement in the achievement vector in Phase 2 over
that in Phase 1. RAM/VM found an initial feasible solution
and then, through a two-for-one exchange, improved the value
of the objective function. The exchange replaced variable
index 1 with variable indices 2 and 7. The value of the
achievement vector in the final solution is 621.0. This is
the value of Z with X , X , and X (the alternatives

2 3 7
associated with the variable indices 2, 3, and 7) set equal
to 1 and all other variables set to 0; this value represents
the optimal (or near optimal) achievement with the set of
constraints. These variable indices (2, 3, and 7) represent
Alternative Group 1 (Alternative 2), Alternative Group 2

17

TABLE 3
SAMPLE OUTPUT FROM RAM/VM

multiple objective resource allocation solution system output

output from phase I

the following variables are in the solution

virlini. injex alternative group number funding alternative number
3 2
I I I

mcniev.1ndnL vector
priority I 471.0000

aultiple objective resource anlocation solution system output
output from phase 2

the following variables are in the solution

varlabit iniex alternative group number funding alternative numter
2 I 2
3 2
1 3

acnjeveoent vector
ortority I 621.0000

multiple objective resource allocationr solution system output

slack remaining in period Is 130.000000

slack remaining In period 2' 38.010000

slack remaining in period 31 51.00000

18

(Alternative 1) and Alternative Group 3 (Alternative 1).

With problems of more than one priority level, the achieve-

ment vector will be provided for each associated priority

level. The output also identifies the slack, or quantity of

unused resources, remaining in each time period.

If, as an additional constraint, one of the alternatives

in the third alternative group had to be selected, IGS would

be set equal to 1, and an additional objective would be added.

This objective would be at the Priority 1 level and would

be:

Maximize: 1X + 1X + lX
7 8 9

The other objectives would then be treated as Priority 2

objectives, and the objective function Z would be:

Maximize
Z [(OX + X2 + 0X 3 + OX + OX 5

+ 0X6 + lx7 +X 8 +I9);

(169X + 13X + 32X + 2X + 30X + loX + 98X + OX + 38X)1 2 3 I. 5 6 7 8 9

+ 2(89X + 71X + 96X + 25X + 33X + 35X + 72X + 48X + 94X)

Table 4 shows how the data file would be set up for such a

problem. Table 4 represents the same problems as those in

Table 2, except it includes the requirement to select one of

the alternatives from the third alternative group.

5. Limitations Due to Size of Problem

The array dimensions restrict the problem size to 200

goals, 3 priority levels, 10 budget periods, 475 alternatives,

and 150 alternative groups. The problem size can be in-

creased through appropriate redimensioning of the arrays,

subject only to time and system limitations.

19

TABLE 4
SAMPLE DATA FILE FOR RAMNM (IGS = 1)

2 2 3 3 1
1 I I 2 2 2

32.009 2.300 J.)) 19.,00D Ya.900 0o.0)0 38.9)n 8.0,Y) 71 .0'-)
96.0) 25.0,0' N 3.) Y) 35.))Y) 72.000 48.9-)0 94.000 9? .03D 9-).Y9
7.03, 92.00 o))J 34. .') 0.r00 YO.n')O 26.000 11 .00Y) 4 7. 0
I 2 2 2 3 3 3
1 2 I 2 - 4 1 2 3

209.001 190.000 2'0.)
).030 3.000 0. 0 .01)3 0.030 0.(O) 1.000 i .Or0 1.0)

6-.,0) 13.'03 s 2.)). 2.00 33.300 I0.()0 98.000).000 3. 0')
dY. 0.3 71.,000 25.000 33.300 i5. 0)0 72.00-3 4.-i,. 0 0, 94.0X10

6. Computational Experience

We ran a number of randomly generated problems cn RAM/VM
during a test program. All the problems generated had four
goals, one priority level, and four budget periods. Table 5
provides a summary of some of the test program results.*

B. Guide to RAM/GP
RAM/GP is a computer code similar to RAM/VM in that it

also solves the multidimensional, multiple-objective pack-
ing problem and uses the same ranking technique and ex-
change heuristic. RAM/GP, however, embodies more aspects
of the goal programming methodology for solving the multiple
objective problem. RAM/VM maximizes the achievement value
of all objectives for each priority level; whereas RAM/GP
minimizes the deviation from set objectives or goals for

each priority level.

*See Volume 4 for additional test data.

20

TABLE 5
SUMMARY OF TEST PROGRAM RESULTS

Number of Mean Percentage of Mean CPU Time
Variables Optimum* (CPU secs)

21 97.3 1.44
40 97.7 2.21
60 _t 3.75
75 6.71
99 _t 9.10

*We based percentage of optimum on RAM/VM solutions that were
within a percentage of an upper bound on the optimal solution,
The RAM/VM solution may, therefore, be closer to the true optimal.

tLimitations of the test program restricted the determination of the
upper bound on the optimal solution for problems with more than
50 variables.

Data input for RAM/GP differs from that for RAM/VM only

in that the desired achievement value for each objective

is included in the data input. This value is shown in

Table 1 as RHS(J), the last line of data to be input. If

the objectives (RHS(J)) are set high enough (so that they

cannot be attained), RAM/GP will arrive at the same solution

as that of RAM/VM. RAM/GP does not give any credit for

surpassing goals; therefore, the value of the achievement

vector as provided by the output will never exceed the sum

of all goals,
NG
(E RHS (J)),
J=l

even though the set goal for some (or all) objectives may

be exceeded.

21

The information provided by the output from RAM/GP is

the same as that provided by RAM/VM output. The solutions

obtained from RAM/GP during the test program compared

favorably with those of RAM/VM and should be within 2 to 3

percent of optimum for problems with less than 50 variables.

RAM/GP does require more CPU time to arrive at the solution

than does RAM/VM.

22

IV. COMPUTER CODES

This chapter contains the computer program listings for

RAM/GP and RAM/VM.

A. RAM/IGP

C=*=,,*= =,=,l*===*==,= PROGRAM RAM/GP 2vzswrws,--wg* a ********=
C
C *wWSSUBROUTINE FUNCTIONS
C
C I FEAS--CHECKS AN EXCHANGE OPERATION FOR BUDGET FEASIBILITY.
C
C 2 COMPARE--CHECKS AN OPERATION FOR PROFITABILITY.
C
C 3. RERANK--REORDERS THE PROJECTS IN THE SETS JS AND NS AFTER
C EACH EXCHANGE. (JS IS RANKED IN ASCENDING ORDER OF PROFIT,
C NS IN DESCENDING ORDER)
C
C 4. FITBACK--USES UP BUDGET SLACK BY ADDING ANY FEASIBLE PROJECTS
C (REGARDLESS OF RELATIVE PROFIT) TO JS.
C

C
C wEZSINPUT VARIABLES
C
C 1. NVAR--THE NUMBER OF 0-1 VARIABLES.
C 2. NG--THE NUMBER OF OPJECTIVE3.
C 3. NP--THE NUMBER OF PRIORITY LEVELS.
C 4. NPER--THE NUMBER OF BUDGET PERIODS.
C 5 NGR--THE NUMBER OF MUTUALLY EXCLUSIVE GROUPS (ALTERNATIVE GROUPS).
C 6. W(J)--THE WEIGHTING FACTOR ASSOCIATED WITH OBJECTIVE J.
C 7. PRCJ)--THE PRIORITY LEVEL WHICH INCLUDES OBJECTIVE J.
C 8. IGR(I)--THE ALTERNATIVE GROUP WHICH CONTAINS VARIABLE I.
C 9. A(I)--THE CONTRIBUTION OF VARIABLE I TO THE ACHIEVEMENT OF
C AN OBJECTIVE.
C 10. C(I,L)--THE COST OF VARIABLE I IN BUDGET PERIOD L.
C 11. B(L)--THE BUDGET UPPER BOUND FOR PERIOD L.
C 12. ILEV(I)--THE FUNDING LEVEL WITHIN IGR(I) RFPRESFNTED BY VARIABLF I.
C 13. IGS--IF SET TO 1, INDICATES THE PRESENCE OF ALTERNA7IVE GROUFC
C WHICH MUST BE FUNDED AT SOME NON-ZERO LEVEL.
C

23

C==-INTERNAL VARIABLES
C
C 1. R(I)--THE PROPORTION OF AVAILABLE FUNDS REQUIRED BY
C VARIABLE IAVERAGED OVER ALL BUDGET PERIODS.
C 2. AHCI,K)--FOR EACH VARIABLE I,THIS IS AN NP-DIMENSIONAL VECTOR,
C WHOSE KTH COMPONENT IS A WEIGHTED SUM OF CONTRIBUTIONS OF VARIABLE I
C TO THE OBJECTIVES AT PRIORITY LEVEL K.
C 3. INIF--A FLAG WHICH COMMUNICATES THE CJRRENT STAGE TO THE
C SUBROUTINE 'COMPARE'.
C 4. INC()--HAS A VALUE OF 1 IF VARIABLE I IS IN THE SOLUTION;
C 0 OTHERWISE.
C 5. IGR(M)--HAS A VALUE OF 1 IF THE GROUP M IS REPRESENTED IN
C THE SOLUTION;O OTHERWISE.
C 6. JS(M)--TAKES ON THE INDEX NUMBER OF THE MTH VARIABLE
C IN THE SOLUlION
C 7. JL--THE NUMBER OF VARIABLES CURRENTLY IN THE SOLUTION SET;JS(M).
C e. NSCM)--TAKES ON THE INDEX NUMBER OF THE MTH VARIABLE NOT IN THE
C SOLUTION.
C 9. LL--THE NUMBER OF VARIABLES CURRENTLY OUT OF THE SOLUTION.
C 10 SLACK(L)--A VECTOR WHICH INDICATES UNSPENT FUNDS IN
C EACH BUDGET PERIOD FOR THE CURRENT SOUTION.
C 11. NUMF--IS A FLAG WHICH INDICATES THE TYPE OF EXCHANGE
C TO PERFORM.

C 12. PROF(K)--IS A NP-DIMENSIONAL VECTOR WHOSE KTH COMPONENT
C IS THE PROFIT GAINED IN THE KTH PRIORITY LEVEL SO FAR IN
C THE CURRENT EXCHANGE CYCLE.
C 13. PROFN(K)--IS A NP-DIMENSIONAL VECTOR WHOSE KTH COMPONENT IS THE
C PROFIT IN THE KTH PRIORITY LEVEL FOR THE EXCHANGE
C UNDER CONSIDERATION.
C 14. IFLAG--TAKES ON A VALUE OF 1 IF AN EXCHANGE IS PROFITABLE;
C 0 OTHERWISE.
C 15. JFLAG--TAKES ON A VALUE OF 1 IF AN EXCHANGE IS FEASIBLE; 0 OTHERVISE

C 16. CAND(I)--TAKES ON THE INDEX NUMBER OF THE ITH VARIAP-LE
C IN THE FITBACK SET.

C****CURRENT DIMENSION STATUS

C 1. NUMBER OF GOALS: 200
C

C 2. NUMBER OF PRIORITY LEVELS: 3
C

C 3. NUMBER OF BUDGET PERIODS : 10
C

C 4. NUMBER OF 0-1 VARIABLES(ALTERNATIVES): 475

C 5. NUMBER OF ALTERNATIVE GROUPS 150
C

C

C RAM/GP WAS DEVELOPED AND WRITTEN AT
C
C ANALYTIC SERVICES, INC

C (TACTICAL DIVISION)
C 400 ARMY-NAVY DRIVE
C ARLINGTON, VIRGINIA 22202
C
C (703) 979-0700
C AV 225-5640
C

24

DIMENSION R(475)
INTEGER PR(475),W(475)
INTEGER OV,HV,OV1,OV2
COMM~ON /COMMI/ SL(10),C(200,10),NPER,JFLAG,SLACK(I0)
COMMON /COMM2/ JS(50),JL
COMMON /COMM3/ AH(2OO,3),PROF(3),IFLAG,NP,PROFN(3)
COMMION /COMM4/ IGN(50)4INC(200),CAND(50),NGR,NVAR

8. LK, ILEVC200),*ACH(3)
COMMON /COMM5/ NUMFOV,JV,KV,LVMVHV,IOUT1,IOUT2

a ICUT3,!Nl, IN2, 1N3,NL,NM,NH,11I,JJ.KK
8. IA, lB.IC, IAA, IBB, ICC
COMMON /COMMS/ NS(200),LL, IGR(200)
COMMON /COMM7/ INIF
COMM.ON /COMM8/ B(10)
COMMON /COMM9/ A(200,50),RHS(50),PER(50),FXT(50),JW(200),

BNG, IPR(200)
READ(1O,501) NVAR,NGNP,NPER,NGR
READ(10,502) (JW(J),IPR(J),J =1,NG)
DO 737 Lzl,NPER

737 READ(10,503) (C(I,L), I=1,NVAR)

READ(10,502) CILEV(I),4 1,NVAR)
READ(10,503) (B(L),L:I,NPER)
DO 714 J-1,NG

714 REAO(10,503) (A(I,J), I=1,NVAR)
READ(10,503) (RHS(J),J=1 ,NG)
I SI Z=1

501 FORHAT(16J5)
502 FORMAT(1615)
503 FORMAT(l0F8.3)
996 FORMAT(' ',2515)

C 1. CALCULATE R(I)
NVAR=NVAR. 1
NGR=NGR+ 1
DO 904 K=1,NG
A(NVAR,K) -0.

904 CONTINUE
DO 905 K=1,NP
AH(NVAR,K) -0.

905 CONTINUE
IGRCNVARI .NGR
ILEVCNVAR)=l
DO 906 Lzl,NPER
C(NVAR, LI =999999.

906 CONTINUE
DO 1 I a 1,NVAR
PC 1130.0
DO 2 L v 1,NPER
R(I IR(1I +(C(I,L)/B(L))

2 CONTINUE
R(I) z RCI)/NPER

1 CONTINUE
C 2. CALCULATE AH(I,K)

DO 4 K=1,NP
DO 4 I a 1,NVAR
AHCI,K) a 0.0

4 CONTINUE
DO 3 J a I,NG
K=IPR(J)
DO 5 I a 1,NVAR
AA - (ACJ,J)xJW(J))/R(II
AHCI,K) a AHCI,K) + AA

5 CONTINUE
3 CONTINUE

C DETERMINE INITIAL SOLUTION

25

C 1. GET MAX(A/R)I FOR EACH GROUP.
INIF =1
LL = 0
DO06 Mu a1lNGR
MAX=0
DO 7 Iz1,NVAR
IF(IGR(I) NE. M) GO TO 7
INCC I)=

VIF(NAX.EGO) GO TO 101

CALL COMPARE (JVOVINIF)
IF(INC(IL EOO) GO TO 102
LL=LL+ 1
NSI LL) :OV
OV = I
GO TO 7

102 LL - LL I
NS(LL) I
GO TO 7

101 ONINE*
INC CI)=1

6 CONTINUE

I NI F:0

Cgzwsv&*RANK S)R**R*u,*uI
DO 8 M=2,NGR
N=M

103 MO=JS(N-1)
MN=JS (N)
CALL. COMPARE(MNMO, INIF)
IF(IFLAG EQ. 0) GO TO 8
INTER = JSCN-1)
JS(N-)=JS(N)
JS(N)=INTER
N=N- 1
IFCN-1) 8.8,103

a CONTINUE
JL=MGR

CSVCHECK (JS) FOR FEASIBILITY AND DELETE BOTTOM ENTRY IF NOT FEASIBLE
104 DO 9 L 1,1r-ER

CC=0.0
DO 10 M 1,JL
I :JS(M)
CCzCC.C(I,L)
IF(CC.GT.B(L)) GO TO 105

10 CONTINUE
SLACKCL):B(L) -CC

9 CONTINUE
GO TO 106

105 11I JS(JL)
INC(II)=0
JLcJL -1
LL*LL. 1
NS(CLL) I I
9O TO 104

106 DO 11 K z I,NP
00 11 I a I,NVAR
AH(I,K)aAH(I K)*R(I)

11 CONTINUE
DO 769 Iu1,LL
JmNS(I)

26

769 CONTINUE
CALL RERANK
DO 797 I%1,LL
J=NS(I

797 CONTINUE
500 CONTINUE

KKFLx0
CALL Fl TBACK(KKFL)
I OFL- I
CALL OUTPUT(IOFL)

C*xt*a*xSECTION 2 FIRST EXCHANGE 113****

DO 722 Izl,LL
J=NS(I)

722 CONT INUE
116 CONTINUE

DO 12 K = 1,NP

PROF(K)=O. 0
12 CONTINUE

NV2=NVAR42

DO 13 NL=1,LL

P4H=NL+ 1
JJFL= 1

109 IF(NH.GT.LL) 0O TO 13
HV = NS(NH)
LV:4S (NL I
IFCIGR(HV) EQ. IGR(LV)) GO TO 107
Go TO 108

10? NH=NH+1 j
GO TO 109

108 CONTINUE
DO 15 L=1,NPER
C(NkV2,L.)=C(HV,L)+C(LVL)

15 CONTINUE
DO 16 II:1,JL
OV=JS(III
IS I GR (LV)
IX: IGR(NV)
IF(GN(IS).NE.AND.IGR(LV).NE.IGR(OV)) GO TO 16
DO 30 K=1,NP
AH(NV2,K 120.
AH(LV, K) :0.

30 CONTINUE
DO 14 J=:1NG
R1:A(LV, J)+A(HVJ)
Dl :A(LV, 3)
RNEED=E(T (J) +AV, J
IF(RNEED.LT.0.)RNEED=O.
R2zAMIN1 CR1 ,RNEED)
D2=AMIN1 CD1,RNEED)
LYIPR(JI
AH(NV2,LY):AH(NV2,LY)4CR2RJW(J))
AH(LV ,LY)=AH(LV LY) D2m JW(J))

14 CONTINUE
IF(UGN(IX).NE.0.AND.IGR(HV).NE IGR(OV)) GO TO 110
NVaNV2
CALL COMPARE(NV,OVINIF)
IF(IFLAG.EO.0) 0O TO 111
CALL FEAS(OV,NV)
IF(JFLAG.EO.0) 0O TO 110
NUMF z2
GO TO 112

27

110 IF(JJFL.GT.1) GO TO 16

NV=LV
IF(NV.EQ.LNM AND.OV.EQ.LNN) GO TO 16

CALL COMPARE(NVOV, INIF)
LNM=NV
LNN=OV
IF(IFLAG.EO.0) GO TO 16

CALL FEAS(OVNV)
IF(JFLAG .EQ. 0) GO TO 16
NUMF~ 1
GO TO 112

JJFL=2
r

GO TO 109
'12 D0 17 K =1,NP

PROF(K)=PROFN(K)
17 CONTINUE

[A = 11
I OUT=OV
IN1 LV
IAA = NL
IF(NUMF.NE.2) GO TO 113
1N2 =HV
IBB cNH
GO TO III

113 1N2 =0
16 CONTINUE

GO TO 107
13 CONTINUE

DO 18 Km1,NP
IF (PROFCK).GT.0) GO TO 114

18 CONTINUE
KKFL = 1
CALL F ITBACK (KYKFL)
I OFL=2
CALL OUTPUT(IOFL)
CALL RERANK
GO TO 118

114 INCIOUTI:O
I NC(INi)= 1
INTER3=JS(IA)

JS(IA):NS(IAA)
N=JS(IA)
IJ- IGR(N)
NS(IAA)=INTER3
IPIGR(INTER3)
IGNC lP)=0
I GNC I J)
IF(IN2.EQ.O) GO TO 115

LLL=O
LLeLL- 1
DO 396 I:1,LL
J: j,?
IF(NS(I).EO.1N2) LLL:1

IF(LLL.EQ.1) NS(t)=N5(J)
396 CONTINUE

INC(IN2)ml
JLuJL4 1
JS(JL)zI N2
LX. IGR(1N2)
IGNCLX)=1

28

115 CALL RERANK

DO 28 L.1,NPER
CC=O. 0
00 29 M=1,JL
I =JS(M)
CC:CC+C (ILI

29 CONTINUE
SLACK (LI=B(L)-CC

28 CONTINUE
GO TO 116

1ie CONTINUE
810 IOFL:3

CALL OUTPUT(IOFL)
CLOSE (8)
CLOSE(101
STOP
END

C*3*SUBROUT INES3. vs**w** 33333333333333333

SUBROUT INE FEAS(CLOV, NV)

COMMON /COMMI/ SL(I0),C(200, 10),NPER,JFLAG,SLACK(10)

COMMON /COMM7/ INIF

DO 1 L=1,NPER
SL(L) aSLACK(L)
SL(L)=SLCL)+C(LOvL)-C(NV,L)
SLF=SL (LI).0005
IF(SLF) 10,1,1

1 CONTINUE
JFLAG~ 1

10 GO TO 11

Cswz33t*RERANK (JS) AND

SUBROUTINE RERANK
COMMION /COMM2/ JS(50),JL
COMtMON /COMM7/ INIF

COMMON /COMM3/ AH-(200,3),PROF(3), IFLAG.NP,PROFN(3)

COMMON /COMM4/ IGN(50), INC(200),CAND(50),NGR,NVAR

S.LK, ILEV(200) ,ACH(3)
COMMON /COMMO/ NS(200),LL,IGR(200)

COMMON /COMM9/ A(200,50),RHS(50) ,PER(50) ,EXT(50),JW(200),

t8NG, IPR(200)
INIF =0
D0 I J=1,NG
PERCJ)=0.

I CONTINUE
DO 2 1O:1,JL
D0 2 Jcl,NG
IZJS(IC)
PER(J)=PER(J)+A(1,J)

2 CONTINUE
DO 3 J-1,NG
EXTCJ) :RHS(JI-PER(J)

3 CONTINUE
DO 4 Izl.JL
00 4 K'1,NP
LZmJS(I)
AH(LZ,K)30.

4 CONTINUE
CL 30.
DO 5 10-l,JL
DO 5 J:1.NG
I .JS(10

29

RV=AC I JJ+EXT(J)
IF(RV.LT.0.) RV=0.
APS=AC I,J)
RSV=AMI Ni APS. RV)
K: IPRC J)
AHCI,K)=AHCI,K)+RSV*JW(J)

5 CONTINUE

IF(JL.LT.2) GO TO 71
00 70 M=2,JL
N=M

700 MO=JSCN-1)
MN=JSC N)
CALL COMPARE(MN,MO. INIF)

IF(IFLAG.EG.l) GO TO 70
INTER=JSC N-I)
JS(N-1)=JSCN)
JSC N):INTER
N:-N-1
IF(N-1) 70,70,700

70 CONTINUE
71 CONTINUE

00 57 M = 2,LL
N=M

604 MO=NS(N-1)
MN=NSCN)
CALL COMPARE(MN,MO, INIF)
IF(IFLAG.EQO) GO TO 57
INTER=NSC N-i)
NS(N-1) m NS(N)
NS(N) =INTER
N:-N-1
IF(N-1) 57,57,604

57 CONTINUE
D0 100 I:'I,JL
II :JSCI)

100 CONTINUE
RETURN
END

Cxwasa:***EXECUTE Fl TBACK***wwx*l***R
SUBROUTINE FITBACK (KKFL)
COMMON /COMMI/ SLCIO),C(200,10),NPER,JFLAGSLACK(IO)
COMMON /COMM2/ JS(5O),JL
COMMON /COMM4/ IGNC50), INC(200),CAND(50),NGR,NVAR

8, LK, ILEVC 200) ,ACH(3)
COMMON /COMM6/ NS(200),LL,IGR(200)
COMMON /COMM7/ INIF

DO 15 L=1,NPER
SL CL) :SLACK(L)

15 CONTINUE
00 11 M=1,NGR
IGNCM) :0

11 CONTINUE
DO 10 Ix1,JL
NSJSC I)
N: IGRC N)
ION CM)=1

10 CONTINUE
LKc0
DO 12 Imt,LL
II uNSII)

30

ILI.
,-z

M= IGR(II I
IF:UGN(MI.NE.0) GO TO 12
DO 13 Lz1.NPER
IF(C(II,L).GT.SLCL)) 00OTO 12

13 CONTINUE
LK=LK+ 1

CAND(LK)xII
DO 14 L=1,NPER
SL(L):SLCL)-C(I I,L)

14 CONTINUE
12 CONTINUE

IF(KKFL .EO. 0 OR. LK EO. 0) GO TO 17
DO I6 I a 1,LK
JJ - CAND(I)
INCCJJ) al
JL -JL + 1

LL =LL-1
JS(JL) zJJ
JK a IGRCJJ)
IGNCJK) =1

18 CONTINUE
17 CONTINUE

RETURN
END
SUBROUTINE COMPARE(IN,IO,INIF)
COMMON /COPFM3/ AH(200,3),PROF(3),IFLAG,NP,PROFN(3)
COMM4ON /COMM4/ IGN(50), INC(200),CAND(50),NGR,NVAP

8,LK, ILEVI 200) ,ACH(3)
COMMON /COMP12/ JS(50),JL
IF(INIF .NE. 1) GO TO 11

DO 1 K m 1,NP
IF(AH(IN,K) - AHIJO,K)) 2,1,3

1 CONTINUE
2 G TO 10
3 INCCIN) a I

INC((0) a0
Go To 10

11 IF(INIF .NE. 0) GO TO 12
DO 4 K =1,NP
IF(AH(IN,K) - AH(IO,K)) 5,4,6

4 CONTINUE
5 [FLAG =0

9O TO 10
6 IFLAG =

GO TO 10
12 IF(INIF .NE. 3) GO TO 10

DO 7 K - 1,NP
PROFN(K) c AH(IN,K)-AH(IO,K)

7 CONTINUE
DO 8 K z1,NP
IF(PROFNCK)-PROF(K)) 18,8,20

8 CONTINUE
18 (FLAG z 0

GO TO 10
20 (FLAG r1 I
10 RETURN

END
SUBROUTINE OUTPUT(IOFL)
COMMON /COMM4/ IGN(50),INC(200),CAND(50),NGR,NVAR
&OLK, ILEVC200) ,ACH(3)

31

COMMON /COMM2/ JS(5O),JL
COMMON /COMM3/ AH(20O,3),PROF(3),IPLAGNP,PROFN(3)
COMMON /COMM6/ NS(200),LL,IGR(200)
COMMON /COMMI/ SL-(1OLC(200, 1OLNPE:R,JFLAG,SLACK(1O)
COMMON /COrIM8/ B(10)
COMMON /COMM9/ A(200.50).RHS(50).PER(50),EXT(50),JW(200).

&NG, IPR(200)
IF(IOFL.GT.1) 0O TO 973
OPEN(8,FORM"FORMATTED",ACCESS="SE0UENTIAL",MODE="OUT",
&CARRIAGE=.TRUE.,FILE='FILEOUT)

973 WRITE(8,600)
DO 398 K=I,NP

398 ACH(K)=0.0
IF(IOFL.NE1l) GO TO 25
WRITE(8,601) IOFL
WRITE(8,602)
WRITEC 8,603)
DO 400 I-1,JL
II :JS(I)
WRITE(8,604) JS(I),IGRCII), ILEV(II)

400 CONTINUE
DO 418 J=1,NG

EE=C-1.)xEXT(J)
EJ=0.
EI:AMAX1 CEE,EJ)
P2=PER(LI -El
L: IPR (J)

418 ACHCL) =ACH(L) +P2*JW(J)
lF(LK.EO.0) GO TO 777
WRITE(8, 605)
WRITE (8, 603)
00 401 1,LK
I I:CAND(I)
WRITE(8,604) II,IGR(II), ILEV(II)
DO 401 K=1,NP
ACHCK)'ACH(K)+AH(Il,K)

401 CONTINUE
GO TO 777

25 IF(IOFL.NE,2) GO TO 50
WRITE(8,601) IOFL
WRITECS, 602)
WRITE (8, 603)
DO 403 IcI,JL
II .jS(I)
WRITE(8,604) JS(I),,IGR(I I),ILEV(II)

403 CONTINUE
DO 419 J=1,NG
EE=C-1)*EXT(J)
EJ:0.
El :AMAXI1C EE, EJ)
P2=PER(J 3-El
Lz IPR(J)

419 ACHCL) :ACH(LI P2aJW(J)
GO TO 777

50 DO 405 Kzl,NP
IF(PROF(K).GT.0.) GO TO 794

405 CONTINUE
90 TO 795

794 CONTINUE
WRITE(8,601) IOFL
WRITE (8, 602)
WRITE(8,603)
DO 406 Iml,JL
II.JS(I)
IF(JSCI).EQ.O) 0O TO 406
WRITE(8,604) JS(II, IGR(II), ILEV(III

32

DO 407 K=1,NP
ACHCK)=ACH(K)+AH(IIK)

407 CONTINUE
406 CONTINUE
777 WRITE(8,606)

DO 402 K=I,NP
402 WRITE(8,607) KACH(K)
795 CONTINUE

IF(IOFL.NE.3) GO TO 909
DO 411 L=I,NPER
CC=0.0
DO 417 M=I,JL
I=JS(M)
CC=CC+C(I,L)

417 CONTINUE
SLACK(L)=B(L)-CC
WRITE(8,609) L,SLACK(L)

411 CONTINUE
909 CONTINUE

RETURN
600 FORMAT('1',35X, 'MULTIPLE OBJECTIVE RESOURCE ALLOCATION

6 SOLUTION SYSTEM OUTPUT')
601 FORMAT('1',55X, 'OUTPUT FROM PHASE ',41)
602 FORMAT('0',45X, 'THE FOLLOWING VARIABLES ARE IN THE SOLUTION')

603 FORMAT('O',17X, 'VARIABLE INDEX',17X, 'ALTERNATIVE GROUP NUMBER',17X,
&'FUNDING ALTERNATIVE NUMBER')

604 FORMAT(' ',23X,I3,30X,13,38Xi2)
605 FORMAT('0'.59X, 'FITBACK VARIABLES')
606 FORNIAT('O',15X, 'ACHIEVEMENT VECTOR')
607 FORMAT(' ',20X, 'PRIORITY 'I1,SXFIO.4)
609 FORMAT('O',40X, 'SLACK REMAINING IN PERIOD ',I2, ': ',5XF10.6)

END

33

- ~ ~..I

B. RAN/VM

Cs::::::=::::::::::E:=:: PROGRAM RAM/VM : :**:*z*
C

C *c**SUBROUTINE FUNCTIONS
C
C 1. FEAS--CHECKS AN EXCHANGE OPERATION FOR BUDGET FEASIBILITY.
c
C 2. COMPARE--CHECKS AN OPERATION FOR PROFITABILITY.
C
C 3. RER'NK--REORDERS THE PROJECTS IN THE SETS JS AND NS AFTER
C EACH EXCHANGE. (JS IS RANKED IN ASCENDING ORDER OF PRZFIT,
C NS IN DESCENDING ORDER)
C
C 4. FITBACK--USES UP BUDGET SLACK BY ADDING ANY FEASIBLE PROJECTS
C (REGARDLESS OF RELATIVE PROFIT) TO JS.
C

C =w==INPUT VARIABLES
C

c . NVAR--THE NUIBER OF 0-1 VARIABLES.
C 2. NG--THE NUMBER OF OBJECTIVES.
C 3. NP--THE NUMBER OF PRIORITY LEVELS.
C 4. NPER--THE NUMBER OF BUDGET PERIODS.
C 5. NGR--THE NUMBER OF MUTUALLY EXCLUSIVE GROUPS (ALTERNATIVE GROUPS).
C 6. W(J)--THE WEIGHTING FACTOR ASSOCIATED WITH OBJECTIVE J.
C 7. PRCJ)--THE PRIORITY LEVEL WHICH INCLUDES OBJECTIVE J.
C S. IGR(1)--THE ALTERNATIVE GROUP WHICH CONTAINS VARIABLE I.
C 9. A(I)--THE CONTRIBUTION OF VARIABLE I TO THE ACHIEVEMENT OF
C AN OBJECTIVE.
C 10. C(I,L)--THE COST OF VARIABLE I IN BUDGET PERIOD L.
C 11. B(L)--THE BUDGET UPPER BOUND FOR PERIOD L.
C 12. ILEV(I)--THE FUNDING LEVEL WITHIN IGR(I) REPRESENTED BY VAR!ABLE I.
C 13. IGS--IF SET TO 1, INCICATES THE PRESENCE OF ALTERNATIVE GROUPS
C WHICH MUST BE FUNDED AT SOME NON-ZERO LEVEL.
C

C

C*vr*INTERNAL VARIABLES
C

C 1. R(I)--THE PROPORTION OF AVAILABLE FUNDS REQUIRED BY
C VARIABLE I,AVERAGED OVER ALL BUDGET PERIODS.
C 2. AHCI,K)--FOR EACH VARIABLE I,THIS IS AN NP-DIMENSICNAL VECTOR,
C WHOSE KTH COMPONENT IS A WEIGHTED SUM OF CONTRIBUTIONS OF VARIABLE I
C TO THE OBJECTIVES AT PRIORITY LEVEL K.
C 3. INIF--A FLAG WHICH COMMUNICATES THE CJRRENT STAGE TO THE
C SUBROUTINE 'COMPARE'.
C 4. INC(I)--HAS A VALUE OF 1 iF VARIABLE I IS IN THE SOLUTION;

C 0 OTHERWISE.
C 5. IGR(M)--HAS A VALUE OF I IF THE GROUP M IS REPRESENTED IN
C THE SOLUTION;O OTHERWISE
C 6. JSCM)--TAKES ON THE INDEX NUMBER OF THE MTH VARIABLE
C IN THE SOLUTION
C 7. JL--THE NUMBER OF VARIABLES CURRENTLY IN THE SOLUTION SET;JS(M).
C 1. NS(M)--TAKES ON THE INDEX NUMBER OF THE MTH VARIABLE NOT IN THE
C SOLUTION.
C 9. LL--THE NUMBER OF VARIABLES CURRENTLY OUT OF THE SOLUTION.
C 10. SLACK(L)--A VECTOR WHICH INDICATES UNSPENT FUNDS IN
C EACH BUDGET PERIOD FOR THE CURRENT SO-UTION.
C 11. NUMF--IS A FLAG WHICH INDICATES THE TYPE OF EXCHANGE
C TO PERFORM.

34

C 12. PROF(K)--IS A NP-DIMENSIONAL VECTOR WHOSE KTH COMPONENT
C IS THE PROFIT GAINED IN THE KTH PRIORITY LEVEL SO FAR IN
C THE CURRENT EXCHANGE CYCLE.
C 13. PROFNCK)--lS A NP-DIMENSIONAL VECTOR WHOSE KTH COMPtNENT IS THE
C PROFIT IN THE KTH FRIORITY LEVEL FOR THE EXCHANGE
C UNDER CONSIDERATION.
C 14. IFLAG--TAKES ON A VALUE OF 1 IF AN EXCHANGE IS PROFITABL-E;
C 0 OTHERWISE.
C 15. JFLAG-TAKES ON A VALUE OF 1 IF AN EXCHANGE IS FEASIBLE; 0 OTHE~v'lf-E
C ?6. CAND(l)--TAKES ON THE INDEX NUMBER OF THE ITH VARIAE'3LE
C IN THE FITBACK SET.
c

C
C*RU N DI NMEIO STAUS:0
C
c 12 NUMBER OF GROLS: LEDD :
C

c 3. NUMBER OF BUDGET PERIODS : 10
C
C 4. NUMBER OF 0-1 VARIABLES(ALTERNATIVES): 475
c
c 5. NUMBER OF ALTERNATIVE GROUPS: 150
C
C
C
C RAM/VM WAS DEVELOPED AND WRITTEN AT
C
C ANALYTIC SERVICES, INC
C (TACTICAL DIVISION)
C 400 ARMY-NAVY DRIVE
C ARLINGTON, VIRGINIA 22202
C
C (703) 979-0700
c AV 225-5S'.O

C

DIMENSION A(475) ,R(475)
INTEGER OV,HV,0V1,0V2
INTE,ER PR(475),W(475)
COI'VION /COMMl/ SL(IO),C(475,10),NPERJFLAG,SLACK(10)
COMMOCN /COMM2/ JS(150),JL
COMOON /COMM3/ AH(475,3),PROF(3), IFLAG,NP,PROFN(3)
COMM'ON /COMM4/ IGN(150),INC(475)..CAND(150),NGR,NVAR

& *LK,*I LEV C200) ,ACH (3)
COMMON /COMM5/ NUMF,OV,JV,KV,LV,MV,HV,IOUTI,IOUT2

& IOUT3. INI, 1N2, 1N3,NL,NM,NH,11I,JJ,KK
8,.IA,]B,IC,IAA,IEB,ICC
COMi:ON /COMM6/ NS(475),LL,IGR(200)
COMMON /COMM7/ INIF
COMMON /COMM8/ B(10)
COMMtON /COMM9/ MMLFL
READC1O,501) NVAR,NG,NP,NPER,NGR,IGS
READC1O,502) (W(J),PR(J),J =1,NG)
DO 300 Lm1,NPER

300 READC1O,503) (C(I,L), I=1,NVAR)

READ(10,502) (ILE(I),Izl ,NVAR)

35

READ(10,503) (B(L),Lz1 ,NPER)
501 FORMAT(1615)
502 FORMAT(1615)
503 FORKAT(10F6,0)
996 FORM~AT(' ,2515)

C
CsxSECTION1.--ESTABLISH A GOOD INITIAL SOLUTION-CHOOSE MOST COST EFFECTIVE
C SET OF OPTIONS UNTIL FUNDS ARE EXPENDED.
c
C**FIRST FIND THE AVERAGE PROPORTION OF AVAILABLE FUNDS USED BY EACH VARIABLE I
C
C 1. CALCULATE R(I)
C

00 1 1 a ,NVAR
Rd I1=0.0
Do 2 L a1,NPER
R(I)=)R(1I +(C(I,L)/B(L) I

2 CONTINUE
R(I = RCI)/NPER

I CONTINUE
C
CwzCOMPUTE (BENEFIT(S)/AVERAGE COST) VECTOR FOR ALL OPTIONS,
C
C 2. CALCULATE AH(I,K)

DO 4 K=I,NP
DO 4 I1 1,NVAR
AH(I,K) 0.0

4 CONTINUE
DO 3 J =1,NG
READ (10,503) (AII),I 1,NVAR)
K=PR(J)
DO 5 I 1,NVAR
IF(IGS.EO.1.AND.K.EQ.l) GO TO 560
90 TO 561

560 AHII,K):A(I)
GO TO 5

561 CONTINUE
AA = (AII)wWIJ))/R(I)
AHII,K) = AH(I,K) + AA

5 CONTINUE
3 CONTINUE

C
C*aDETERMINE INITIAL SOLUTION.
C
CxwADD A DUMMY VARIABLE TO INSURE THAT 1:1 EXCHANGES WILL BE MADE
C WITH LEAST BENEFICIAL OPTION,
C

ISIZZ1
IF(ISIZ.NE.0) 0O TO 907
NVAR=NVAR. I
NGR=NGR+ 1
DO 9O5 K:1,NP
AH(MVAR,K)zO0.

905 CONTINUE
IGRCNVAR)=NGR
ILEY(NVAR) :1
DO 906 Lu1,NPER
C(NVAR,L) a 1000.

906 CONTINUE
90? CONTINUE

36

C
C*WNOW CHOOSE THE OPTION WITH THE LEXICOGRAPHIC MAXIMUM (BENEFIT/COST)

C VECTOR FOR EACH SUBSET OF MUTUALLY EXCLUSIVE OPTIONS.
C

INIF a 1
LL - 0
DO 6 M z1,NGR
MAX=O
00 7 l=1,NVAR
IF(IGR(II NE. M) GO TO 7
INC(I)=
IV: I
IF(MAX.EQO) GO TO 101
CALL COMPARE (IV,OV,INIF)
IF(INC(II.EO.0) GO TO 102
LL=LL+ 1
NS(LL) 20V
OV =I
60 TO 7

102 LL = LL I
NS(LL) I
GO TO 7

101 OV=I
INC (11:1
MAX1l

7 CONTINUE
JS(I1) OV

6 CONTINUE
I NI F:0

C~wNOW RANK THE SET CONTAINING THE MAXIMUM (BENEFIT/COST) VECTOR
C OPTIONS FOR EACH ALTERNATIVE GROUP IN DESCENDING ORDER OF (BENEFIT/COST)
C VECTOR MAG-NITUDE.
C

DO 8 M=2,NGR
N:M

103 MO:JS(N-1)
MN:JS(N)
CALL COMPARE(MNMO,INIF)
IF(IFLAG EQ. 0) GO TO 8
INTER = JS(N-1)
JS(N-1)zS(N)
JS(N)=I NTER
N:N-1
tF(N-l) 8.8,103

a CONTINUE
JL=NGR

CxXCHECK TO SEE IF THE INITIAL SOLUTION CONFORMS TO ALL FUNDING CONSTRAINTS
C IF NOT, REMOVE ENTRY WITH SMALLEST BENEFIT VALUE AND PLACE IN SET OF
C NON-FUNDED OPTIONS--REPEAT UNTIL BUDGET FEASIBILITY IS REACHED.
C
Cw*&CHECK (JS) FOR FEASIBILITY AND DELETE BOTTOM ENTRY IF NOT FEASIBLE
C
104 DO 9 L = 1,NPER

CCSo. 0
DO 10 M a 1,JL
I uJ5(M)
CCzCC+C(IL)
IF(CC.GT.B(L)) 00 TO 105

37

10 CONTINUE

SLACK(L):B(L)-CC
9 CONTINUE

GO TO 106
105 11 = JS(JL)

I NCC II 1:0
JL=JL- 1
LL:LL+ 1
NS(LL)=:lI
GO TO 104

C
C**EXCEPT FOR A PRIORITY ONE GOAL INDICATING THOSE SUBSETS WHICH MUST
C RECEIVE NON-ZERO FUNDING (IF PRESENT), RERANK OPTIONS IN BOTH SETS
C (IN THE SOLUTION AND OUT OF THE SOLUTION) IN RESPECTIVELY, ASCENDING
C AND DESCENDING ORDER OF BENEFIT VALUE,
C
106 DO 11 K m 1,NP

DO 11 1 = 1,NVAR
IF(IGS.EO.1.ANDK.E0.l) GO TO 11
AH(I,K)=AH(I K)*R(13

11 CONTINUE
CALL RERANK

500 CONTINUE
KKFL=0

C-NOW USING ANY SLACK FUNDS CHECK THOSE SUBSETS OF MUTUALLY EXCLUSIVE
C OPTIONS WHICH ARE NOT IN THE INITIAL SOLUTION TO SEC IF -AN-Y MEMBER
C CAN BE FIT BACK INTO THE INITIAL SOLUTION. THESE ARE)D7NTIFIED IN
C THE OUTPUT AS "FITBACK VARIABLES" IF PRESENT.
C

CALL FITBACK(KKFL)
C
C**NCW OUTPUT INITIAL SOLUTION.
C

I OFL. 1
CALL OUTPUTCIOFL)

C
CxwrauxSECTION 2 FIRST EXCHANGEm3s3*s33*

C'xIN THIS SECTION 2:1 AND 1:1 EXCHANGES ARE MADE BETWEEN THE JS (FUNDED) SET'
C AND THE NS (NOT FUNDED) SET.
C
C~wNOW TEST IF THE LAST 2 MEMBERS OF THE RANKED NSS LIST BELONG TO THE SAMC
C MUTUALLY EXCLUSIVE GROUP. IF SO- -SET MMFL TO THE INDEX NO OF THAT GROUP
C

MMLFL z 0
JE:=4S CLL
LMI=LL- 1
JF=NS(LM1)
IF(IGR(JE).EQ.IGR(JF)) MMILFL aIGR(JE)
II JD

116 CONTINUE
I IJ=I JlJ~

CmwZERO OUT EXCHANGE PROFITABILITY INDICATOR.

DO 12 K a I,NP
PROF(K)20. 0

12 CONTINUE
C

38

C'xNOW SET UP 2:1 EXCHANGE
C

NV2=NVAR+2
I NIF=3
DO 13 NL=1,LL
I DU14=0
NH=NL.1
JJFL- 1

C
C**IF LL LIST IS EXHAUSTED--EXIT EXCHANGE CYCLE.
C
109 IF(NH.GT.LL) GO TO 13

NV = NS(NH)
LVmNS CNL I

C
CmwTWO ENTERING ALTERNATIVES MAY NOT BELONG TO THE SAME
C MUTUALLY EXCLUSIVE GROUP.
C

IF(IGR(HV) EQ. IGR(LV)) GO TO 107
GO TO 108

107 NH=NH+1
GO TO 109

108 CONTINUE
C
CxxDETERMINE COMBINED CONTRIBUTION TO ALL GOALS J, OF
C TWO "ENTERING" ALTERNATIVES.
C

DO 14 J=I,NP
AH(NV2,J1=AH(HV,J).AH(LVJ)

14 CONTINUE
c
C:*DETERMINE COMBINED COST IN ALL BUDGET PERIODS L, OF
C TWO "ENTERING' ALTERN6.TIVES.
C

DO 15 LxI,NPER
CC NV2 , LI=CCHV,L) .CCLV, L)

15 CONTINUE
C
Cs*NOW LOOK FOR 2:1 EXCHANGES WITH MEMBERS OF JS SET.
C

DO 16 11-1,JL
OV:3S(III
IS: IGRC LV)
[X: IGRC NV)

C
C*aEXCHANGE MUST BE FEASIBLE WITH RESPECT TO MUTUALLY
C EXCLUSIVE SUBSETS.
c

IF(IGNCIS).NE.0.AND.IGR(LV).NE.IGRCOV)) 0O TO 16
IFCIGNCIX).NE.O.AND.IGRCHV).NE.IGR(OV)) GO TO 110
NV *NV2

c
C*aTEST EXCHANGE FOR PROFITABILITY (MUST BE MORE PROFITABLE
C THAN ANY OTHER FEASIBLE EXCHANGE TRIED IN 2:1 CYCLE).
C

CALL COMPARE(NV.OV,INIF)
IF(IFLAG.E0.0) 00OTO 111

C
CiaTEST EXCHANGE FOR BUDGET FEASIBILITY.
C

39

F

CALL FEAS(OV,NV)
IF(JFLAG.EQ.O) GO TO 110
NUMF =2
GO TO 112

C

CSRIF ANY 2:1 EXCHANGE WITH HIGHER RANKING OF 2 "ENTERING"
C VARIABLES HAS BEEN UNPROFITABLE, OR IF ALL 1:1 EXCHANGES
C WITH HIGHER RANKING OF 2 "ENTERING" VARIABLES HAVE DEEN
C UNPROFITABLE, SKIP 1:1 EXCHANGE.
C
110 IF(JJFL.GT.1) GO TO 16

IF(IDUMEQ,LV) GO TO 16
NV=LV

C
C*UASSUME 1:1 EXCHANGE FEASIBILITY WITH RESPECT TO MUTUALLY EXCLUSIVE
C GROUPS.
C

IF(NV.EO.LNM.AND.OV.EQ.LNN) GO TO 16
C
CxwCHECK 1:1 EXCHANGE FOR PROFITABILITY AND BUDGET FEASIBILITY.
C

CALL COMPARE(NV,OV,INIF)
LNM=NV
LNN=OV
IF(IFLAG.EO.0) GO TO 16
CALL FEAS(OV,NV)
IF(JFLAG EQ. 0) GO TO 16
NUMF=1
GO TO 112

C
C'-AFTER NON-PROFITABLE 2:1 EXCHANGE HAS BEEN TRIED--IF INDEX OF HIGH
C RAN(,ING "ENTERING" VARIABLE IS 1, OR IF HIGH RANKING "ENTERING"
C VARIABLE'S MUTUALLY EXCLUSIVE GROUP IS REPRESENTED IN THE FUNDED
C SET, INCREMENT INDEX OF HIGH RANKING "ENTERING" VARIABLE AND
C CONTINUE. IF NOT, INCREMENT INDEX OF LOWER RANKING "ENTERING"

C VARIABLE AND CONTINUE
C
111 IF(II.EQ.1) GO TO 13

IF(IGN(IS).EQ.1) GO TO 13
NH=NH+1
JJFL=2
GO TO 109

C
CswIF A PROFITABLE AND FEASIBLE EXCHANGE WAS FOUND, CHANGE CRITERION
C FOR PROFITABILITY, AND SET UP PROVISIONAL EXCHANGE VARIABLES
C

112 DO 17 K a 1,NP
PROF(K)=PROFN(K)

17 CONTINUE
IA - II
IOUT OV
IN1 x LV
IAA a NL
IF(NUMF.NE.2) GO TO 113
IN2 a MV
leB a NH
0 TO 111

113 IN2 a 0
16 CONTINUE

#DUNzLV

40

9O TO 107
13 CONTINUE

DO 18 K-1,NP

CszIF NO PROFITABLE AND FEASIBLE EXCHANGE WAS FOUND--FITBACK USING
C REMAINING SLACK AND OUTPUT SECOND STAGE SOLUTION.

IF (PROFCK).GT.O.O) GO TO 114
i8 CONTINUE

KKFL = I
CALL Fl TBACK (KKFLY
I OFL=2
CALL OUTPUT(IOFL)
IF(ISIZ.EO.1) GO TO 810

Cw*MAKE MOST PROFITABLE FEASIBLE EXCHANGE FOUND AND BEGIN CYCLE AGAIN

114 INC(IOUT)DO
INCC (Ni)=
INTER3=JS(IA)
JS(lA)=NS(IAA)
NJS(IA)
I J:IGR(N)
NS(IAA)zINTER3
IP=IGR(INTER3)
IGNI4(p)=O
IGNCIJ)=1
IF(1N2.EO.0) 0O TO 115
LLLft0
LL=LL-1
DO 396 I21,LL

IF(NS(Il)EQ.1N2) LLL%1

396 CONTINUE
INCC 1N2)=1
JLxJL~
JS(JL)zIN2
LXcIGR(1N2)
IGNCLX)v1

115 CALL RERANK
00 28 L-INPER
CCro.0
DO 29 M=1.JL
I wJS(M)
CCaCC*C(I, L

29 CONTINUE
SLACK(L)wB(L) -CC

28 CONTINUE
SO TO 116

810 I0FLm3
CALL OUTPUT(IOFL)
CLOSE(S)
CLOSE(101
STOP
END

C

SUBROUTINE FEAS(LOV,NV)

41

C
C*2CHECKS FOR BUDGET FEASIBILITY.
C

COMMON /COMMI/ SL(10),C(475, 10),N-ER,JFLAG,SLACK(10)
COMMON /COMM7/ INIF
DO 1 L1l,NPER
SL(L) = SLACK(L)
SL(L) =SL CL) +C(LOV, LI-CC NV, L
SLF=SL CL +. 0005
IF(SLF) 10,1,1

1 CONTINUE
JFLAG= 1
GO TO 11

10 JFLAG=0
11 RETURN

END
c

SUBROUTINE RERANK

C-2REORDERS PROJECTS IN JS AND NS AFTER EACH EXCHANGE.

COMMON /COMM2/ JS(150),JL
COMMON /COMM7/ INIF
COMMON /COMM3/ AHC475,3),PROFC3),IFLAG,NP,PROFN(3)
COMMON /COMMO' NS(475),LL,IGR(200)
INIF =0
IF(JL.LT.2) GO TO 71

DO 70 M=2jJL
N=M

700 MO=JS(N-1)
MN=JS(N)
CALL COMPARF(MN,MO,INIF)
IF(IFLAG.EO 1) GO TO 70
INTER=JS(N-1)
JS(N-1)=JS(N)
JS(M)=INTER
NHN-1
IF(M-1) 70,70,700

70 CONTINUE
71 CONTINUE

DO 57 M z2,LL
N=M

604 MOtNS(N-1)
MN*MS CN)
CALL COMPARE(MN,MO,INIF)
IF(IFLAG.EQO) 0O TO 57
INTER=NSCN-1)
NS(M-1) a NS(N)
NS(N) =INTER
N=N.1
IF(14-1) 57,57,604

Z7 CONTINUE
RETURN
END

C

42

cI

SUBROUTINE FITBACK (KKFL)
C
C*%USES UP BUDGET SLACK TO FIT BACK PROJECTS.
C

COMMON /COMM~I SLC1O),C(475,10),NPER,JPLAGQSLACK(ID)
COM14ON /COMM2/ JS(150),JL
COMMON /COMM3/ AH(475,3),PROF(3),IFLAGNPPROFN(3
COMMON /COMM4,' 1GN(150),INC(475),CAND(150),NGR,NVAR

&,LK. ILEV(200),A0H(3)
COMMON /COMM6! NS(475),LL,IGR(20O)
COMMON /COPMM7/ INIF
DO 15 L=1,NPER
SL(L) :SLACK(L)

15 CONTINUE
DO 11 M=1,NGR
IGN(M) =0

11 CONTINUE
DO 10 1=1,JL
N=JS(I)
M=:1GR (N)
IGNCM)=1

1D CONTINUE
LKc0
DO 12 I11LL

DO 19 K=1,NP
MP=MP AHC II,K)

19 CONTINUE
IF(MP.E0.O) GO TO)2
MZIGR(II)
IF(ION(M).NE.0) GO TO 12
0O 13 L:1,NPER
IF(CuI),L).GT.SL(L)) GO TO 12

13 CONTINUE
LK=LK,1
CAND (LK) I
DO 14 L:1..NPER
SL(L)=SL(L)-C(1II,L)

14 CONTINUE
12 CONTINUE

IF(KKFL .EQ. 0 OR. LK EQ. 0) 0O TO 17
DO 18 I 1.,LK
JJ wCAND(I)
INccJJ) %I
JL =JL 4 1
LL =LL-1
JS(JL) z JJ
JK xIGRCJJ)
IGN(JK) al

18 CONTINUE
17 CONTINUE

RETURN
END

C

SUSPOUTINE COMPARE(IN.1OINIF)
C

43

CIKCHECKS FOR PROFITABILITY.

COMMON /COMM3/ AH(475,3),PROF(3), IFLAG,NP,PROFN(3)
COMMON /COMM4/ IGN(150).INC(475),CANDISO15),NGR,NVAR

8,LK, ILEV(200),ACH(3)
COMM3~ON /COMM2/ JS(15OLJL
IF(INIF .NE. 1) G0 TO 11
DO I K - 1,NP
IF<AHUIN,K) - AH(1O,K)) 2,1,3

1 CONTINUE
2 GO TOl10
3 INCCIN) I

INCC 30) -0

SO TO 10
11 IF(INIF .NE. 0) 00 TO 12

D0 4 K =1,NP
IF(AH(IN,K) - AH(IO,K)) 5,4,6

.4 CONTINUE
5 IFLAG =0

GO TO 10
6 [FLAG =1

GO TO 10
12 IF(INIF .NE. 3) GO TO 10

DO 7 K =1,NP
PROFN(K) =AH(IN,K)-AH2IO,K)

7 CONTINUE
DO 8 K =1,NF
IF(PROFNCK) -PROF(K)) 18,8,20

8 CONTINUE
18 IFLAG =0

GO TO 10
20 (FLAG 1
10 RETURN

END
C

SUBROUT INE OUTPUT(IOFL)

C
CawWRITES OUT THE SOLUTION.

COMMON ICOMM41' JGNr15Oi,1NC(475),CAND(150),NGR,NVAR
8,LK, ILEV(200) ,ACH(3)
COMMON /COMM2/ JSt150),JL
COMM~ON /COMM3/ AH(475,3),PROF(3),IFLAG,NP,PROFN(3)
COMMON /COMM6/ NS(475),LL,IGR(200)
COMMON /COMMI/ SL(10),C(475,10),NPER,JFLAG,S.ACK(10)
COMMON /COMM8/ B(10)
COMMON /COMM9/ MMLFL
IF(IOFL.GT.1) GO TO 973
OPENIS, FORM= FORMATTED" ,ACCESS:"SEOUENTIAL ,MODE:"OUT',
8CARRIAGE:.TRUE.,FILE"FILEOUT")

973 WRITE(8,600)
DO 398 K=I,NP

396 AC14CKJuO.O
IF(IOFL.NE 1) 0O TO 25
WRITE(8,601) lOFL
WRITE(e,602)
WRITE(8, 603)
00 400 lulJL

44

WRITE(8,604) JSC I), IGR(II), ILEV(II)
DO 400 K:1,NP
ACHCK)=ACI4(K)*AH(I I,K)

400 CONTINUE
IF(LK.EQO) 0O TO 777
WRI TEC 8,605)
WRI TEC 8,603)
DO 401 J.1,LK
I I cCfNf(I)
WR1TE(8, 604) II, IGR(II),*ILEV(II)
DO 401 K=1,NP
ACHCK)=ACH(K)+AH(II,K)

401 CONTINUE
60 TO 777

25 IF(IOFL.NE.2) 0O TO 50
WRITE(8,601) lOFt
WRI TEC8,602)
WRI TE (8, 603)
DO 403 IzI,JL
II .JS(I)
WRITE(8,604) JS(I),IGR(II), ILEV(II)
DO 403 Kcl,NP
ACHCK)=ACH(K)+AH(II,K)

403 CONTINUE
60 TO 777

50 DO 405 KzI,NP
IF(PROF(K).GT.0.) GO TO 794
GO TO 795

794 CONTINUE
405 CONTINUE

WRITE(8,601) IOFL
WRITE(8,602)
WRITECS, 603)
DO 406 121,JL
II =JStI)
IF(.)S(l).EO) 0O TO 406
WRITE(6,604) JS(I), IGR(II), ILEV(II)
DO 407 KZ1,NP
ACH(K)=ACH(K)+AH(II,K)

407 CONTINUE
406 CONTINUE
777 WRITE(8,606

DO 402 K=1,NP
402 WRITE(8,607) K,ACH(K)
795 CONTINUE

IF(IOFL.NE.3) GO TO 909
0O 411 Lw,NPER
Ccuo.0
DO 417 M*I,JL
I mJS(M)
CC*CC#C(J,L)

417 CONTINUE
SLACK L) SBL) -CC
WRITE(8,609) L,SLACKCL)

411 CONTINUE
909 CONTINUE

RETURN
600 FORMAT(' 1,35X, MULTIPLE OBJECTIVE RESOURCE ALLOCATION

8 SOLUTION SYSTEM OUTPUT')

45

601 FORHAT(1I,55X, 'OUTPUT FROM PHASE '.11)
602 FORPNAT('0'.45X, 'THE FOLLOWING VARIABLES ARE IN THE SOLUTION-)
603 FORPKAT('0',17X,'VARIABLE INDEX',16X,'ALTERNATIVE GROUP NUMBER',16X,

&'FUNDING ALTERNATIVE NUMBER'
604 FORMAT(' 'j23X,I3,3OXI3,38X,I2)
605 FORMAT('O',59X,'FITBACK VARIABLES-)
606 FORsQ'kT('0',15X, 'ACHIEVEMENT VECTOR')
607 FORMAT(' ',20X. PRIORITY '11,5X,F20.4)
609 FORMA1'('0',4OX, 'SLACK REMAINING IN PERIOD ',12,': ',5X,F20.6)

END

46

RESOURCE ALLOCATION METHODOLOGY FOR
AIR FORCE R&D PLANNING

I

Volume 3: Guide to the Interactive RAM Program

--- Now

CONTENTS

Volume 3

Paoae

I. INTRODUCTION 1

II. USER'S GUIDES....................3

A. User's Guide to the Program NOW 3

1. Background 3
2. Program-User Interaction. 4

B. User's Guide to Subroutine GRAPH 10

III. PROGRAMMER'S GUIDES. 21

A. Programmer's Guide to Program NOW.........21

1. Background...................21
2. Program Description.............22
3. Definition of Variables...........30

B. Programmer's Guide to Subroutine GRAPH 33

1. Program Description.............33
2. Definitions of Variables Used in Subroutine

GRAPH.....................38

IV. COMPUTER CODES.....................41

A. Program NOW....................41

B. Subroutine GRAPH..................47

I. INTRODUCTION

This volume is one of four that document ANSER's develop-

ment of R&D resource allocation methodology (RAM) for the

Director of Program Integration, AF/RDX. Volume 1 provides

an overview of the work and its applications. Volume 2 des-

cribes the RAM technique and how to use the general-purpose

computer programs that incorporate it. Volume 3 describes how

to use the interactive computer program developed for use of

the RAM within AF/RDX, and Volume 4 describes the way in which

we tested its computational performance. Each volume

emphasizes some particular aspect of our research and can be
read independently of the others.

This volume describes the computer software we wrote to

enable AF/RDX to use the RAM algorithm with its in-house data

base of Air Force R&D programs. It is designed for that

computer system, specific hardware, and data base; consequently,

the software is not readily transferrable to other systems.

Nevertheless, other readers may also find the software design

potentially useful for decision making in resource allocation.

Our goal in producing the software was to demonstrate

the relative ease with which it could be used to obtain an

investment strategy. The user of the software needs only a

basic knowledge of computer programming. By merely specifying

on the computer terminal the available resources as a function

of time, the user receives from RAM the list of programs

providing the greatest benefit. (This presumes, of course,

that the program alternatives have been evaluated in advance

with respect to the chosen objectives.) To determine the

impact of funding cuts or enhancements, the user simply has

to type in some data. One of the available outputs is a

graphic display of the benefits and costs for the various

1d

investment strategies generated. This display enables the

user to see whether the strategies are at "efficient" points

on the cost/benefit curve.

In Chapter II, we describe the interactive portion of

the software. Using the software does not require an under-

standing of RAM, but if interested, the reader may refer to

Volume 2 for an explanation. The user may desire to make other

parts of the data base interactive or to produce graphic

displays other than those we have designed. Chapter III, which

serves as a programmer's guide for those modifications, re-

quires detailed knowledge of computer programming. Chapter

IV contains the appropriate computer codes.

At the time this work was completed, the anticipated

"benefit" data were not available in the official data base.

Consequently, to demonstrate the software, we substituted

a simple procedure that generates random benefit data. If

appropriate data became available, this procedure could be

easily changed using the information in Chapters III and IV.

2

II. USER'S GUIDES

A. User's Guide to the Program NOW

1. Background

NOW* is a computer program written in the PL/l programming

language; it is on file at the Air Force Data Services

Center's Multics computer system. NOW is the master program

driving a set of subroutines, the purpose of which is to

determine and compare investment strategies for the selection

of funded program element (PE) alternatives within a mission

area.

The information necessary for the execution of the program

is part of a data base managed by AF/RDX on the Multics.

The user must obtain the required Multics clearances to access

the data base.

The NOW user should be aware of the general nature of the

R&D data base. The data are grouped into 10 mission areas,

indicated by the number codes 000, 100, 200, 300, 400, 500,

600, 700, 803, and 900. An eleventh category, "off," is also

listed. The "off" category identifies the official data base,

which contains official data in the 10 mission areas. The

official data base contrasts with a working-level data base

that, at any given time, may be in a state of flux. The

"off" data base contains all R&D program elements. Users of

NOW will normally access the official R&D data base. A

*Names of computer terms in this report are in upper case

except where they are to be literal input to the computer
system. Such inputs, when described in the test, are given
in quotes.

tWith FORTRAN language subroutines.

3

second data base, the "sc" data base, also exists, but, at the

time of this writing, is not in use.

2. Program-User Interaction

The following is a step-by-step procedure for use of the

interactive portion of the program. (See Figure 1 for inter-

actions in an actual run.)

You* are now assumed to be within the Multics facility

and to have a copy of program NOW. You must now log on to the

system at a SECRET level. If your name is Smith, the appro-

priate log-on format is as follows:

"I Smith -auth s"

Initiate execution of program NOW by entering the word "now"

via the terminal keyboard. The system will respond by re-

questing your Multics personal ID. For Smith, the appropriate

response is "Smith," not "Smith -auth s".

After entry of your personal ID, the program asks a series

of questions intended to determine your inputs to a resource

allocation algorithm. The program first asks whether you

desire the rd or sc data base. Respond by entering "rd" or
"sc". In response, the program lists the codes indicating

the mission areas to which you have clearance to access. The

mission areas corresponding to the number codes are as follows:

000 Programs Not Assigned to a Mission Area

100 Strategic Offense

* For simplicity, "you" is synonomous with user throughout
the rest of this chapter.

4

FIGURE 1
PROGRAM-USER INTERACTION

now

Enter your Multics person-id Clary

that dataoase? rd or sc? rd

You nave access to the following mission areas:
000
I 00
200
300
400
500
o00

300
900
off

off data? yes

,lhich mission area? if none, type 'none'. IOU

ahat appropriation? 3600

Aow many years of cost would you like to consider? /

Enter year, budget 79 1000000

Enter year, oudget dO 100000

Enter year, budget 81 100000

Enter year, budget b2 100000

Enter year, budget 83 10,JO

Enter year, budget 84 J0000

Enter year, budqet 85 100000

15

200 Strategic Defense

300 Tactical Air Warfare

400 Space Launch and Orbital Support

500 Mobility

600 Reconnaissance

700 Command, Control and Communications

800 Technology Base

900 Defense-Wide Management and Support.

The program next asks whether you wish to use official

data with the query

"off data?"

It also asks you to select a mission area. Respond with one

of the mission area codes to which you have access. This

selection determines which mission area the resource allocation

routine will consider. If you wish to terminate the program,

enter the word "none".

The R&D allocation process works with the following four

appropriation categories and their respective number codes:

o Aircraft Procurement, 3010

o Missile Procurement, 3020

o Other Procurement, 3080

o RDT&E, 3600.

Each program element is stored in the data base with, among

other things, its associated appropriation code (3010, 3020,

3080, or 3600). Thus, when you select an "appropriation,"
a subset of the program elements from the selected mission

..... -Naha.

area is designated for input to the resource allocation pro-

gram. You must respond to the query: "what appropriation?",

with one of the four number codes. At the present time, data

exist for the 3600 appropriation only.

You must now decide which budget years you want the

resource allocation routine to consider and the budget levels

for the selected years. For budget years, you may designate

any set of years from 79, 80, 81, 82, 83, 84, and 85.

The system will ask: "How many years of cost would you like

to consider?" The system will then ask you to enter the

budget year and budget level for the selected years. You

should leave a space between the budget year and level. Note

that the budget is entered in thousands of dollars; therefore,

enter $100,000, for example, as "100".

You have now completed the necessary inputs for one exe-

cution of the resource allocation program. Table 1 gives a

complete listing of your input alternatives.

TABLE 1
USER INPUT ALTERNATIVES

Data Mission Appropriation* Budget Yearst Budget Levels
Base* Area*

sc 000 3600 79 Expressed in
rd 100 3080 80 thousands of

200 3010 81 dollars
300 3020 82
400 83
500 84
600 85
700
800
900

*Choose only one.
tChoose any or all.

7

,%

At this point, before execution of the resource allocation

algorithm, the system scans all PE alternatives. Those

alternatives having zero funding levels for the specified

budget years are not considered in the resource allocation

algorithm. They are, however, printed out for your con-

venience.

After execution of the resource allocation algorithm, the

system displays those program elements that the resource

allocation algorithm selected for funding. It includes

some self-explanatory, associated data base information.

Costs of each PE alternative for each of the 7 budget years

and benefits to the goals are also provided.

Note the instructions printed out just before the first

page of classified output. After each page of classified

output is printed, you must enter some character, for

example, "a". Then, if you are using a CRT terminal and

desire a permanent output record, you must make a copy on

the Tektronix 4631 Photocopier. You must then reset the

page and, finally, press the return key. The photocopying

and page reset steps are, of course, omitted if you are at

a hardcopy terminal. The instructions are printed out only

once, but you must execute this sequence after each page of

classified material is printed.

The next output is a summary of the costs and benefits

of the set of program elements selected by the resource

allocation subroutine. The total cost of the selected pro-

gram elements summed over all cost years and the total

benefits for each task* are printed out. An example of such

output follows.

*"Benefits for each task" means the contributions toward
achievement of the goals.

8

fne total cost of the solution Is 9100.00
benefit to task I - 268.8I
benefit to task 2 - 23U.BV
benefit to task 3 - 262.54
benefit to task 4 - 181.86

Do you want the output from this strategy saved for graphs? Please answer yes or no.
yes
jo you want to generate more data before constructing graphs?
yes

Select one of the following'
I-different database
2ndifferent mission area
3-different appropriation
4-different budgets for years currently considered
5-different years of cost data
onstop)

Ohat database? rd or sc? rd

You have access to the following mission areas,
000

2 1)
Jou

400
500
600

dUU

off

You must now decide whether you want the results of the

resource allocation subroutine to be shown graphically. The

system will ask, "Do you want the output from this strategy

saved for graphs?" If the answer is "yes," you must then

decide whether to generate additional results before con-

structing graphs or to proceed into the graphics segment

of the program with the solutions you already have.

The system will ask, "Do you want to generate more data

before constructing graphs?" If your answer is "yes," the

system will display a set of alternatives for the next

resource allocation. If your answer is "no," the system will

take you through subroutine GRAPH before you can try any

9

additional resource allocation strategies. (See Section II.B

for subroutine GRAPH documentations.)

At some point, you must decide on your next resource

allocation strategy. You are offered six alternatives: to

use a different data base; to use a different mission area

within your current data base; to use a different appropria-

tion within your current data base and mission area; to use

different budget levels; to use different budget years; or

to exit the program. You need only enter the number

designating the desired option.

If you do select the sixth alternative (exit the program),

then further user/program interaction will consist of repe-

titions of previous interactions.

B. User's Guide to Subroutine GRAPH

This subroutine enables you to obtain graphics output

that depicts the impact of alternative investment strategies

on the costs and benefits pertaining to a single mission area.

We assume in this discussion that subroutine GRAPH is

being called by the NOW program. Use of subroutine GRAPH

under other circumstances is briefly discussed at the end of

this section.

Within the context of the NOW driver program, subroutine

GRAPH is automatically called after each execution of the

resource allocation algorithm, RAM/VM*. Subroutine GRAPH

presents you with a summary of the allocation results, such

as the following:

*See Volume 2 for explanation of RAM/VM.

10

The total cost of the so'vtior is 83.90
benefit to task I 11i.00
benefit to task 2p 3* -
benefit to task 3 *- S8
benefit to task 4 2 2:9.e0
berefit to task 5 • * .0!
benefit to task 6 • 0 .ee
benefit to task 7 - 4.6
benefit to task 8 * 4.60

You are then asked if you wish to save the results to be

plotted on graphs. (The information saved is, of course,

considerably more extensive than what is shown.) If you do not

want to save the results you are returned to the main pro-

gram. If you do want to save the results, you are then asked

if you want to generate more data before constructing graphs:

The total cost of the solution is 83.9
contribution to benefit measure 1 " 110.0e
coatribution to benefit measre 2 - 330.e
contribution to benefit measure 3 - 30.52
contribution to benefit measure 4 - 221%.*e
contribution to benefit measure S - 7Se.e:
contribution to benefit measure 6 - 2eee.ee
contribution to benefit measure 7 - 4.60
contribution to benefit measure I • 4.60

Do go% West the output from this strategi saved for graph*s Ptease an3.er yea or h

ro .Vo mnt to learate more date before constricting graphs!

If you answer "yes," control is passed back to NOW for another

resource allocation with a different investment strategy. If

you answer "no," the subroutine enters the section where it

constructs the graphs.

As described in Figure 2, four types of graphs are avail-

able through subroutine GRAPH. Note that Graph Type 4 can

portray the results of only one resource allocation at a

time. The graph will still represent only those results even

if you have saved the results of applying resource allocation

methodology to different mission areas or in some other manner

have constructed noncomparable results in a series of resource

allocations. The rest of the graphs compare the data resulting

11

FIGURE 2
SUMMARY OF SUBROUTINE GRAPH CAPABILITIES

Graph Type I BENEFIT
TO TASK i

Graph of benefit of solution to
individual task versus total
solution costs summed over all
years.

Each point plotted is total cost of
solution due to strategy k versus
benefit of that solution to task i,
k = 1, 2 . TOTAL SOLUTION COST

BENEFIT

Graph Type 2

Total benefit versus total solution
cost for each strategy.

Each point plotted is the total
cost of solution due to strategy k
versus total benefit due to
strategy k, k = 1, 2, j. TOTAL SOLUTION COST

BENEFIT
TO TASK n

Graph Type 3

Individual task benefits versus cost
of individual budget periods.

Each point plotted is the cost of
year i versus the benefit to task n
for the solution due to strategy k,
k = 1,2. j. COST OF YEAR i

COST

Graph Type 4

Cost of a given strategy for each
budget period.

BUDGET PERIOD

12

from separate resource allocation runs. Clearly, you must

make certain that inputs to such graphs are comparable.

Graph Type 1 depicts the total solution cost summed over

all years versus the contribution of the solution to a spe-

cific task for each strategy. Thus, what is graphed is the

set of points {(x(k),y(i,k), k=l,...,j}, where j is the total

number of solutions saved for graphing; x(k) is the total cost

of the solution corresponding to the kth strategy the user has

saved; and y(i,k) is the benefit of the kth solution to the

ith task. Each point on this graph represents a different

resource allocation. You must input task index i. The

computer/user interaction needed to generate this graph is:

So" i t *A W |rv p: et a tttal slvtor test sumvd ever all wers vs. contri\Cb~t&Q% of solt u € & n nda,,adus, benefit measures"

a, .. indix for Ue be(L mesukre.

4
sotj: Cost dat 33.w 70so01.60

*o01tia bol te Igle 23.G I02.e

You can generate this graph for as many tasks as you desire.

Figure 3 shows a sample of this graph type.

Graph Type 2 represents total solution benefits versus

total solution costs for each strategy. Thus, the plot con-

sists of the set of points {x(k), y(ngl,k), k=l,...,j}. The

variables x(k) and j have the same definitions as those in

Graph Type 1. The variable y(ngl,k) stores the sum of the

benefits of the kth strategy, i.e.,

ng
y(ngl,k) = E y(m,k), ng = number of tasks.

m=l

Once again, each point represents a different solution. The

computer/user interaction to generate this graph is:

13

FIGURE 3
SAMPLE GRAPH TYPE 1

2250

2200-

2150,

2100.

2050

'4 20001

.M 1950

LI 1900

4' 1650

- 1900

c 1750

m 1700-

1500

70.0 75.0 90.0 03. 0 90. 0 95.0 100.0 105.0 110.0

Total Solutison cos(I mrilions

14

60 Von "&At a grap of totat bermlt vs. toal coat ler each s t" ;rt

Seutia Cost date 03. 70.90 160 60
ta.tiom beeft date SM-S. 66. 10 £Sg.36

A sample of this graph type is given in Figure 4.

Graph Type 3 depicts the solution contribution to task n

versus the cost of an individual budget period i for each

strategy or solution. The plot consists of the set of

points f(yr(i,k), y(n,k)), k=l,...,j 1. The variables j and
y(n,k) have the same definitions as those previously mentioned.

The variable yr(i,k) is the total cost of the kth saved

solution in the ith budget period. Again, each point repre-

sents a different strategy. The user/computer interaction

necessary to generate this type of graph is:

Do w saW graph& of coat of and~'ld.el budget periods a. aif'iidust task berefits,

in budget period desired.

Keyj to task bernef it index.3

To be plotted La •aa graph of cost of Vtar 3 vs. benefit to task S•
sa"lTtioA cost da 36.10 33.50 32.70
boltAea beselit data 700.1 0.70 0.00

You can generate this graph type for as many budget periods

and tasks as you desire. An example is given in Figure 5.

Graph Type 4 depicts the cost of a single strategy for

each budget period. The results of each strategy are graphed

separately to avoid the possibility of an inconsistent graph.

The computer/user interaction necessary to generate this

graph is:

Do wow west graph& sh-c LI cost of stratevi for astr k-.i.t per,,,

The subroutine automatically generates this graph for each
strategy as currently written. An example of this graph

type is given in Figure 6.

15

FIGURE 4
SAMPLE GRAPH TYPE 2

W5OO

600 '

5500

5000

4500

Aj
-- 4000

c0
CD

3000

2500

2000

0
1500

1000 .4-------4---4--- +------4---4--.4 +---- -i-+---4 .-.
70.0 75.0 90.0 P5. 0 90.0 V0.0 ',O 1OS.0 110.0

Total solutivn co-;t(in rllIIons)

16

I.

FIGURE 5
SAMPLE GRAPH TYPE 3

730,

700.

65,0

600

550.

500
- 250-

4000

350

140

*-- 300'
4,1

250
200,

150'

100,

32.6 33.0 33.4 33.8 34.2 34.6 36.0 35.4 35.9 3.Z

Cost f ytor 3

17

FIGURE 6
SAMPLE GRAPH TYPE 4

49.5

47.0.

44.5-

42.0

30.5.

E-4 27.0

0
U 24.5

22.01

2.9.5

17.0.

1990.0 19&0. 1al 19f1 . E 8 .4 tW3. 19.6

Rd c t f'r r ud

18

For each graph type, you are asked if you want any graphs

of that type. If the answer is "yes," for Graph Types 1, 3,

and 4, you are asked to input the appropriate benefit measure

indices or budget period indices. Note that you cannot use

the budget period and task directly; rather, you must use the

appropriate index. Thus, if you desire a graph involving

1990 (the third budget period), you must input the index "3",

not 1990.

Since Graph Type 2 has no alternatives associated with

it, the system will simply ask whether or not you want it.

Answer "yes" or "no"; no other inputs are necessary

After each graph is produced, a question mark will flash

in the upper lefthand corner of the screen. You may now make

a copy of the graph on the Tektronix 4631 photocopier. To

inform the subroutine that you are ready to move on to the

next graph, type "q" and hit the return key. You should

clear the screen before typing "q" to avoid screen clutter.

If you do not, the next question will be printed over the

graph, which is not automatically removed from the screen.

Graph Types 1, 2, and 3 pose a problem in that each

point plotted on these graphs is an output from a different

strategy, but no information is embedded in the graph to

tell you which point is associated with which strategy. We

recommend the following procedure to provide identification.

Before displaying the graph, the subroutine will print the

data to be graphed. This information occurs in two rows of

data. The first entries in each row correspond to the inputs

from strategy 1, the second entries in each row correspond to

the inputs from strategy 2, and so forth. For example, if

you have answered "yes" to the question, "Do you want any

graphs of total solution costs summed over all years vs.

19

benefit of solutions to individual tasks?", you will be asked

to key in a task index. Assume you have keyed in index "5,"

and that three solutions have been saved. The following data

will be displayed:

solution cost data 83.90 70.90 108.60

solution benefit data 700.01 0.70 0.00

(see Figure 3). The first two values in each row, 83.90 and

700.01, represent the point (83.90, 700.01) resulting from

strategy 1. The second two values represent the point (70.90,

0.70) from strategy 2, and so forth. We recommend that you

make a copy of these data when they are flashed on the screen.

If you press the "copy" key as soon as the data are presented,

the copy can be made before the subroutine is ready to present

the graph. Hopefully, this entire problem will be solved by

future modifications to the subroutine.

Another problem, which can easily be corrected, is that

once you have answered the question, "Do you want to generate

more data before constructing graphs?" with a "no," you will

exit from subroutine GRAPH, and all data stored in it will be

lost. Thus, no data are saved after the graphs have been made.

You may wonder why the points in the various graphs are

not connected with lines. The reason is that the quantities

being graphed do not change in a linear fashion; rather,

values tend to jump suddenly. Furthermore, the parameter

changes that will cause a change in the optimal solution are

not predictable without extensive sensitivity analysis. Thus,

"connecting the dots" in the usual linear fashion is mathe-

matically meaningless.

The last concern is that graphs can be produced only

from Tektronix CRT terminals that are attached to the

Multics computer system.

20

III. PROGRAMMER'S GUIDES

A. Programmer's Guide to Program NOW

1. Background

This program acts as an interface between the user, the

data base, and the allocation and graphic subroutines. The

user inputs the mission area, appropriation, and years under

consideration and their budget ceilings. The program then

retrieves program elements (PE) numbers and alternatives

from the data base and indexes them for input to the allo-

cation routine. The results are passed to the output

subroutine and then to the graphics subroutine. When sub-

routine GRAPH is finished, the program run is essentially

finished, and the user may stop or choose one of the other

options to generate a new problem.*

The main program is written in PL/l, and some of its

significant features are:

o The range of a DO loop is terminated at the first
"end" statement, which is equivalent to the FORTRAN
"continue" with the appropriate statement number
in front.

o The concatenation operation joins two or more
strings together into one larger string.

o The four subroutines that are written in PL/l are
all physically contained in the main program. This
means that a variable in the main program is known
by the same name in the subroutines, as long as it
is not declared in that subroutine. This eliminates
the need for argument lists in the call statements
to these subroutines.

*For details on how to solve problems with this routine, see
"User's Guide to Program NOW," Section II.A.

21

o PL/I stores its array elements in row-major order;
that is, the rightmost subscript varies most rapidly.
This differs from FORTRAN, which uses column-major
order. Here, the dimensions of any two-dimensional
array in the main program must be reversed from th"
dimensions of the corresponding array in either of
the FORTRAN subroutines, before the values can be
passed correctly through the argument list.

The program accesses the data base through the built-in

dsl subroutines to retrieve the necessary data. Each dsl

call is usually followed by a statement that calls the

com err_ subroutine if the variable code is not equal to

zero. This is only the case if something abnormal has

occurred during the dsl subroutine, and com err_ will print

out a description of the error that caused the nonzero

code.

A new search rule must be added to the user's ordinary

search rules so that the system's graphics subroutines can

be located when called. The add search rules (asr) command

accomplishes this task and may be done automatically if the

command is placed in the user's start-up.ec.

2. Program Description

This program is described sequentially. Line numbers

have been added for convenient reference and are keyed to the

computer code listed in Section IV.A of this volume.

22

.Program Description

Line
No.

1 Procedure statement - entry point to program

2-9 Declaration of all external subroutines

10-16 Declaration and definition of a block for the quit
(interrupt) condition. If the break key is passed
while the program is running, control will be trans-
ferred to this block, which ensures that the data
base is properly closed before returning to command
level

17-18 Declaration of integer variables and arrays

19 Declaration of binary-based floating point data,
which corresponds to the FORTRAN "real" data

20 Declaration of the cost data as fixed decimal to

correspond with the numbers in the data base

21-29 Declaration of all character data

30-35 Initialization of some character data to the
different parts of a dsl subroutine call's
selection expression

36 Initialization of the variable path to the path
name of the proper data base

37 delta is set to a small positive number

38 rseed is set to any random seed

39 Initialization of five different variables to zero

40-41 Person id is asked for and read in

42-43 User is asked to input rd or sc for data base, and
the response is read into the data base

23

44-48 The data base is opened. If an error occurs,
com err is called and processing is halted

49-50 Scope is set on the "protect" submodel, and corn err
is called if an error occurred

51-58 The first mission area that the user has access to
is retrieved, and the usual precautions are taken
in case of an error

59 A mission area access heading is printed out

64-65 The user is asked if he wants official data, and
yes(y) or no(n) is read into dc

66-67 The user is asked to input the mission area, and
the response is read into subma

68-73 If the user entered "none" for mission area, then
the data base is closed and processing stopped

74-75 If the user wants official data then ma is set
equal to "off"; otherwise it is set to the mission
area

76-78 The name of the submodel that the user will be ac-
cessing to obtain PE numbers and cost data is
retrieved, and comrerr_ is called if an error occurs

79-85 Scope is deleted, the data base is closed, and
com err_ is called if either code does not equal
zero

86-87 Ask for appropriation and read into appro

88-89 Ask for number of years to be considered, and
read into nper

90-93 Ask for year and budget ceiling for each period,
and read into nyr() and b(

94-104 This section opens the proper submodel and sets
scope on "char" and "relation." Char is the part
of the data base that contains PE numbers and
their different funding alternatives. Relation
is a variable that represents the part of the
data base that contains the appropriate cost data

24

~ii

This section is skipped if dec equals five. This
can happen only if the user selected option five
after the first allocation was completed. If
this is the case, then these instructions are
unnecessary and so can be omitted

105 The number of groups (PE numbers) is initialized
to zero

106 exp8 is set to a character string that forms the
selection expression of the data base call that
will retrieve PE numbers given the mission area
and appropriation

107 The first PE number is retrieved

108-117 This block is activated if the preceding retrieval
resulted in an error. An error message and three
user options are printed out, and control is trans-
ferred as desired

118-122 This loop retrieves all remaining PE numbers and
places them in penum(

123 The number of variables (a PE and an alternative)
is initialized to zero

124 exp7 is set to a character string that represents
the selection expression of a data base call that
will retrieve the alternatives and cost data for
each PE

125 A heading is printed out for any zero cost alter-
natives that may be found

126-175 This loop retrieves all the alternatives and the
cost data for each for a given PE. If any alter-
native has cost equal to zero for all the years
under consideration, then it will not be indexed
as a variable. If all the alternatives under a
PE have zero cost, then that PE will be eliminated
and ngr reduced by one

127 If i equals the reduced number of groups, then go
to the next i

25

130 The ith PE number is obtained from penum(

131 The first alternative and its associated cost
data are retrieved

136 Subroutine DCOST is called

137-141 The current alternative is checked for zero cost.
If yes, then the PE and alternative are printed
out and flagl and jj are set to 1. Flagl = 1
signifies that the first alternative under this PE
has zero cost. jj is changed from 2 to 1 because
k, which indexes the remaining alternatives under
this PE, is started at jj and in this case will
be the first, not the second, variable

142-148 If the first alternative was a valid one, however,
then this section is processed instead of the
previous one

143 The number of variables is incremented

144 Subroutine COST is called to store the cost data of
the current variable

145-147 The variable is indexed into the group number and
the alternative number under that group and the
funding level is stored in the progalt array

149-165 This loop retrieves the remaining alternatives
and their cost data under the current PE. It checks
for zero cost and indexes in the same manner as that
for the first alternative

166-174 This section is processed only if flagl = 1 and
flag2 = 0, which can happen only if no nonzero
cost alternatives occurred under the current PE.
In this case, the penum array is adjusted to
eliminate that PE number, the number of groups
is reduced by one, and i is decremented so that a
number will not be skipped on the next pass through
the loop

176-178 The allocate, output, and graph subroutines are
called in order. Allocate and graph are referenced
by <filename>$<program name>, since they are lo-
cated in a storage region outside of the main pro-
gram

26

... " - - ' . . I l.- •.. . : -
" - :"

" . . [l r' l ,,, ,. . . , - ,,,,.L

179-182 The user options are printed and the response read
into dec

183 If the user asks for a different appropriation, then
control is transferred to statement 12

184-193 This section is for a different data base or
different mission area options. Scope is deleted,
the data base is closed, and comm err is called
in case of error. Then control is transferred to
the appropriate place

194-204 This section is for the different budget ceilings
option. The number of years with new budgets is
asked for and read into nchange. Then each year
and its new budget level are read in and control
transferred as appropriate

205-211 This section is for the option to choose different
years of cost data. All budget ceilings are zeroed
out, and control is transferred back to where the
years and budget ceilings are input

212-215 This section can be reached only if the user elects
to stop. Scope is deleted, the data base is closed,
and processing is halted

27

Description of Subroutines DCOST and COST

DCOST: This subroutine checks all alternatives for zero
funding. It totals the cost of the current alter-
native over the years under consideration and
returns that value in asum. When dcost is finished
processing, asum is immediately checked for a zero
value.

COST: Once an alternative has been determined to be a
legitimate variable, subroutine cost is called to
store its cost data. The main program uses the
array cst, with cst(i,j) the cost of variable j in
budget period i. Note that these dimensions are
reversed in the corresponding c array in the two
fortran subroutines.

output:

2-8 Declarations and initializations

9-11 Print instructions and read in a dummy character

12 Set the entire sum array equal to zero

13-17 Since six alternatives will be printed per page,
this block determines how many pages will be
required and how many alternatives will be left
for the last page.

18 Skip two lines of output

19 Concatenate a data base variable to represent the
selection expression necessary to retrieve the cost
data for each variable

20-50 This loop prints a page of output each time through

21-23 Print page heading

24-25 Set upper limit on inner loop to 6, unless this is
the last page to be printed

26-45 This loop prints an alternative and its associated
data each time through

28

27-29 Determine the PE number and funding alternative for
the current variable

30-35 Retrieve the PE title for the current variable, call
comerr_, and exit the loop if an error occurs

36-37 Retrieve the cost data for the current variable, and
exit the loop if an error occurs

38 Call subroutine sumcost to maintain a running total
of the cost of the solution for each budget period

39-45 Print out the current variable and its cost and benefit
data, and repeat loop until ii > indexl

46 If all output is finished, print the cost total for

each budget period

47-48 Print another heading, and skip two lines

49 Read in a dummy character

50 End the page-printing loop

29

7
AD96 546, ANALYTIC SERVICES INC ARLINGTON VA

F/S /
RESOURCE ALLOCATION METHODOLOGY FOR AIR FORCE R&D PLANNING.(U)
JUN 80 G COOPER, S ADAMS. J CLARY, J PERLIS F49620-77-C-0025

UNCLASSIFIED ANSER-TON-80-1 NL2 flllfffflllfff

II....IIII
1111111%

3. Definition of Variables

nvar: The number of variables. A variable is a specific
funding alternative with nonzero cost under a
given PE number

ngr: The number of groups or PEs under a given mission
area and appropriation with at least one nonzero
funding alternative

pe: PE number under consideration

penum
Contains all legitimate (nonzero funding) PE numbers

appro: Appropriation

pealt: Funding alternative under consideration

progalt
(n): Funding alternative of variable n

ma: Equals "off" for official data; otherwise equals
mission area

subma: Mission areas, 000 to 900; used to retrieve PE
numbers

nper: Number of budget periods that will be considered for
the problem

nyr th
(n): n year, two digits, 79-85

ny: Year index number, = nyr(y) - 78

budget: Budget ceiling for a given year

b(n) Budget ceiling for year n

yrl-yr7: Cost data for a given variable

cst
(i,j): Cost of variable j in budget period i

sum(n): Total cost of solution in period n

30

delta: Small positive number, to check for zero cost
alternatives

asum: The total cost of an alternative, summed over all
periods under consideration

nchange: User option, number of years with a new budget
ceiling

init: Passes to subroutine GRAPH the number of times that
it has been called minus 1

dummy: A 1-character dummy variable used to temporarily
halt the output so that the user may reset page
if a CRT is being used

expl
exp8: Character strings that contain parts of the various

data base selection expressions

sub-
model: The submodel (subset) of the data base that will be

accessed

data
base The path name of the proper submodel

dbi,
dbil: Data base index numbers, returned from a dsl_$open

call

code: Returned by all dsl subroutines; code equals zero
if the data base call was performed succ(essfully;
otherwise it equals a particular number, depending
on the exact error that disabled the subroutine

db: Data base, rd or sc as user desires

rela-
tion: The specific area in the data base that contains

the appropriate cost data

ilev
(n): Index number of variable n under its PE number

31

'I

igr(n): Index number of the PE to which variable n belongs

js(n): Index number of nth solution variable

jl: Number of variables in the solution

zw(i,j): Benefit to task i from variable j

ng: Number of goals (tasks)

xl(),yl(),
y2(): Arrays that preserve the values of three arrays of

subroutine GRAPH in case it is called more than once

32

1bJ

B. Programmer's Guide to Subroutine GRAPH

1. Program Description

This section describes in detail the workings of sub-

routine GRAPH. You* should read it with a subroutine listing

in hand (see Section IV.B). An alphabetical listing of

variable definitions is given in Section III.B.

Before starting into subroutine GRAPH, we should discuss

the parameter j, which is passed to GRAPH in the subroutine

call statement. The parameter represents the number of

sets of resource allocation output data you have saved to be

graphed. You must set j equal to zero in the calling program

before calling GRAPH.

The variables c, uper, js, ngr, nvar, ng, nyr, zw, jl,

x, y, and yr are listed as subroutine arguments because the

calling program is written in PL/I. A PL/I program may not

share variables with a FORTRAN subroutine.

The first DO loop, DO 2, and the statement preceding it

x(j+l)=O.O,

initialize x(j+l) and yr(L,j+l), L=l,...,nper. The DO 5 loop

computes the total solution cost x(j+l) and the cost per-

budget period of the solution yr(L,j+l)

jl nper
x~j~l= Z E c(js(i),L)

i=l L=1

jyr(L,j+l)= E c(js(i),L) ; L=l,...,nper,
i=1

where L indexes budget periods and i indexes the selected

program alternatives. The total solution cost is printed

out at this time.

*You in this section refers to you, the programmer. However,

at times you will be taking on the role of user as well.

33

... . m -"- * - ,. ... ,,4 ,_ _ . _ .

The next DO loop, DO 10, computes the contributions of

the solution to the goals with respect to which benefits are

measured (also called tasks) , y(m,j+l) , for each task ir .

Thus
jl

y(rn,j+l) = E zw(js(i),n) , m=l,...,ng.
i=l

The total benefits for these tasks are also printed out.

At this point, you have the total solution cost and the

total solution benefit as follows:

the total cost of tI.q soUto is
Qo:tr~btt!0A to tass I * :O

r. trlb ako' to tas 2 33 2.e
citri tiva to task 3 2!P

co" trahuti o n to t as k 4 * S9
C :r~tio' to tak 5 0.

C.: trhU tioi to task B * 185

Do Wow nmt the oi~tpit from %. stretI*38y ".eo t,, q- r- * em~-s- r -

\Car noe

0 lieu wart to ge.erat. airo data tre vr - ' iz ~ '

DO Wo% ~ :wa jrpht. t'~5- , ~ . over at Oears vs cocstr.
\Cbut "l of ,r. Id~ . .t rect -PA rr

C; . index for the bevf il P ft~

You are then asked whether you want to save the data associ-

ated with this solution for incorporation into graphs. if

you answer "yes," j is incremented by 1,

j-i-- j + .

34

Since the value j+l was used in the DO 5 and DO 10 loops,

incrementing j has the effect of saving the results of these

loops. Also at this time, the sum of the benefits of the

solution, y(ngl,j), is computed in the DO 15 loop,

ng
y(ngl,j) = Z y(m,j).

m=1

You are then asked if you want to generate more data

using additional investment strategies before constructing

graphs. This questi- is also asked if you answered "no" to

the preceding question. (However, if you did answer "no," j

will not be incremented, and the next time GRAPH is called,

the current stored values will be lost.) If you want to

generate more data, control is passed back to the calling

program. If you do not, you are taken to the portion of

the subroutine that generates the graphical output. We

will proceed under the assumption that you answered "no."

The first graph type (see Figure 3 for sample)* that can

be generated is the contribution of the solution to individual

tasks y(i,k), m+l,...,ng versus total solution costs summed

over all years, x(k), for each solution k, k=l,...,j. Thus,

a graph consists of a set of points {(x(k),y(i,k)), k=l,...,j}.

You are asked if you want any graphs of this type. If you

answer "yes," you are then asked to key in the index i for

your desired task. The index is an integer from the set

{l,2,...,ng) referencing one of the tasks. If you answer

"no," control jumps to the "101 continue" statement for

entry into next graph type. We will proceed under the

assumptic7 that you answered "yes."

*For a summary of all graph types offered, see Figure 2.

35

Once you have selected the benefit measure index i, the DO

27 loop stores the value of y(i,k) in the single subscripted

variable z(k), k=l,...,j. This is necessary, since the
"xyplot" statements used to construct the graph will not

accept a double subscripted variable.

The total solution cost x(L) is written out for each

solution L, L=l,...,k, and the contribution of the solution

to task i,y(i,L) is written out for each solution L, L=l,

... ,j. You should make a copy of this information when it

appears on the screen, since you will have no other way of

knowing which point on the graph is associated with which

strategy.

The encode and associated statements that now occur are

used to concentrate the task index i to the rest of the

graph's title, stored in zz, and the rest of the y-axis

title, stored in ben. If you are unfamiliar with encode

statements, you should consult Multics system documentation

before tampering with encode statements, variables used in

encode statements, or format statements associated with

encode statements. The encode statement is discussed on

pages 5 through 12 of the MuZtics FORTRAN Guide.

The "call xyplot" statements that now occur call system

subroutines that construct and display the graph. A complete

discussion of the xyplot statements is contained in the do-

cument XYPLOT, which was prepared by, and is available from,

Mr. Robert G. Finney of the Air Force Data Services Center.

Once the graph has been displayed, a question mark will

appear in the upper Jefthand corner of the screen. This

indicates that you may now make a copy of the graph on the

Tektronix 4631 photocopier. Once you have made a copy of

the displayed graph, clear the screen to avoid the clutter

36

I~m~~

that arises from overprinting on the graph (the graph will

not be removed automatically). Then inform the system that

you are ready to move on to another graph by typing "q".

Upon receipt of the "q" signal, the subroutine returns to

the question, "Do you want any graphs of this type?" If

you do, the preceding sequence is repeated. If you do not,

the subroutine goes to the "101 continue" statement to initiate

proceedings on the next type of graph.

The next statement after the "101 continue" statement

asks whether you would like a graph of total benefit versus

total cost for each alternative (see Figure 4 for sample). If

you do not, control is shifted to the "206 continue" state-

ment before the next set of graphs. If you do, the subrou-

tine proceeds to construct this graph. The DO 110 loop

stores the sum of the benefits of the kth strategy y(ngl,k)

in the single subscripted variable z(k) because "xyplot"

statements will not accept double subscripted variables as

inputs.

Next the system displays the x and y coordinates of the

points to be graphed, (x(L),L=1,j) and (y(ngi,L), L=1,...,j).

As we have mentioned previously, you should make a copy of

this information on the Tektronix 4631 copier. The "call

xyplot" statements create and display the graph of the set

of points {(x(L),y(ngl,L), L=I,...,j}.

The next graph type shows individual task benefits for

each strategy versus individual budget periods (see Figure 5

for sample). If you want a graph of this type, key in the

budget period you desire and the benefit measure index. The

DO 214 loop stores the double subscripted variables y(n,k)

and yr(i,k) in the single subscripted variables z(k) and

v(k), respectively. The arrays of numbers to be graphed

{yr(i,L),L=l,j} and {y(n,L), L=l,j} are then printed out.

37

The encode statements set up the title and x-axis and y-axis

labels. The xyplot statements construct and display the graph.

After you have viewed the graph and signaled the system

to continue with the program, control is returned to the "201

continue" statement. You are then asked if you want any more

graphs of this type. If so, the sequence repeated. If not,

control is transferred to the "301 continue" statement for the

final set of graphs.

The last graph type shows the cost of an individual stra-

tegy, or solution, for each budget period (see Figure 6 for

sample). Thus, the set of points graphed is {(yr(i,n),nyr(i),

i=l,...,nperl. This graph is automatically produced for each

n, n=l,...,j if you want any graphs of this type.

When the "401 continue" statement is executed, the graph-

ing is completed. If you set j equal to zero, you will rein-

itialize subroutine GRAPH. Data currently stored in sub-

scripted variables will be overwritten the next time sub-

toutine GRAPH is called by program NOW.

2. Definitions of Variables Used in Subroutine GRAPH

ben Character-string variable used in constructing
the legend for the y-axis on several of the
graphs

c(js(i),l) Cost of the js(i)th program alternative
during the lth budget period

cost Character-string variable used in constructing
the legend for the x-axis on one of the graphs

iz Used in an xyplot$build statement to indicate
the type of symbol to be used to designate
plotted points

38

Denotes the number of different solutions to
the resource allocation problem that have been
stored in subroutine GRAPH; each time the
user answers the question "Do you want the
output from this strategy saved for graphs?"
with a "yes," j is incremented by 1, and the
solution is saved

ji Number of selected PE alternatives

ng Number of goals or tasks toward which resources
are allocated by the resource allocation al-
gorithm

ngl Used in several places as a temporary storage
location for the value ng+l

nper Number of budget periods over which program
costs have been computed; budget periods would
typically be in fiscal years

nyr(i) The ith budget period; for example, if the
second budget period is 1990, the nyr(2)=1990

title Character variable used to store the title of
each graph; previous content stored in title
must be deleted before new content is inserted

tle Character variable used in building up the
legend for the y-axis of one of the graphs

tpe Character variable used in building up the
legend for the y-axis of one of the graphs

tse (same as above)

v(k) Used to store yr(i,k) for each k; necessary
because arguments called by xyplot$build must
be variable with a single subscript, so a
graph using the values stored in yr(i,k)
cannot be built using yr(i,k) as an argument

x(j) Stores the total cost of the solution corres-
ponding to the jth strategy that the user
saves to be graphed

39

xlabel Character variable that is used in storing the
legend for the x-axis of each of the graphs

y(mj) Stores the benefit of the jth strategy or
solution to the mth task

y(nglj) Stores the sum of the benefits of the jth
strategy

ylabel Character variable that is used in storing the
legend for the y-axis of each of the graphs

yr(l,j) Stores the total cost of the jth strategy or
solution in the lth budget period

z(1)
Used to store the value of y(i,l) for each 1;
necessary because arguments called by xyplot$
build must be variables with a single subscript,
so a graph using the values of y(i,l) cannot be
built using y(i,l) as an argument

zw(js(i),m) Stores the value of the contribution of the
js(i)th program alternative to the mth benefit
measure

zz Character variable used to store the title of
each of the graphs

40

IV. COMPUTER CODES

A. Program NOW

pr now.pl I

now.pll 11/05/79 1224.1 est Mon

now' proc optlonsimain);
dcl (ram~allocate~gphsgraph) entry options(variable);
dcl dsl..Sopen entry options(variable);
dcl dsl..Sclose entry options(variable);
dcl dsl..sdl-scope..all entry options~variable);
dcl dsl...Sdl.scope entry options(variable)i
dcl dsl...sset.scope entry options~variable)t
dcl dsl....retrieve entry options(variatle)i
dcl cor.n.err-. entry options(variable)l
dcl quit condition;
on quit

beg in;
call dsl....close(dbi1,code);
call dsl..sclose (dol ,code);
stop;
end;

dcl(dbi,dbfl.dec,code~ilev(35),igr(350),lyr(J0).surn(7),ng,
per;,ny,jl,js(BO),nvar~ngr,nper,flagl.flag2) fixed binary;
dcl(yl(ILU,25),xU(IO).cstUO,350),b(O),rseedgdelta,budet,zw(4500)) binary floa,

zodcl(yr1,yr2.yr3,yr4,yr5,yr6,yr7,asum) fixed decivnal(8,O);
dcl(pealt,progalt(35O),db) char(2).dc char~i),
(ma,answer) char(3).
appro charC4), (pe~penum(dO)) char(6),
dp char(9), (suomodel,expl) char(iO),
relation charC8), subma char(3).
exp2 char(W,), exp5 char(20).path char(25),
Cname,person..id) chaz-C15), acct char(32).
database char(35), exp3 char(46),exp8 char(103),
exp4 char(I30). exp7 char(148);
expl='-range (p N;

exp2="1) (c char) -select 118
exp3=1p.pe -where (((c.ma-.xIXO = .V.) & (c.pe = pe"
exp5=1) d, (p.appro =

exp4='1) -select p.dp p.yrl-dol p.yr2-dol p.yr3..dol p.yr4-dol p.yr5-col p.yr6-dol
MOp.yrl..dol..where ((p.pe=.V.) & (p.appro = V)"
patn=">udd>RDIS~rdis-lib'RD-Dtj>I>
deltaz.OQO0I;
rseed=74852399.O;
init,dbi,dbil,dec,ngrH=O;

y Lput skip list("Enter your Multics person..id")l
get list(person..id);
141 put skip 11st(Ililhat database? rd or scV);
get list(db)S
151 call dsl-Sopen(u>ud>DS~rds-ib~DDB~protect.dsm"'.dbll,i,code);
lf(code^=O) then
do$ call coal..errjcode.Nopening protect')l
stop;
end;

41

call dsl...Sset..scope(dbi,protect",IO,3Ocode)e
...Lt(code-=O) then call co..err..code,"settlng scope on protect"');

call dsl..Sretrieve~dbll,d..range(p protect)-select p.ma p.permission -where(p.
person-.id,ma,perm,code);
if~code-=O) then
do$ call com..err(code,11retrrevinq ma',s1)S
call dsl-$close(dbl~code);
lf(code-=O) then call com...err-.(code, 4closing database");
stop;
endo

put skip Ilst("You have access to the following mission areass1)1- - -
60 o whlle~code=O)l

puL skip list(ma)f
call dsL..Sretrleve~doil ,--another",person-.id,maper',code)I

e ndlput skip(2) Ilst(-"of data7?')i
get list(dc);
lit put skip list("ithich mission area? It none, type lnonei.M.)s
get list(subna);

if(subma="non") then
do; call dsl..sdl.scope..all(dbil.code);
call dsl....close~dbVitcode);
Lfrcode=Uthen call com-.errcode,mclosin<; database')l
stop;
endi

lf(dcal"y') then ma='1off";
else ma-submal
call dsl-.Sretrieve~dbil."-range(p protect)-select p.submodel-where((p.ma=.V

Ma ,Derson...d,submodel,code) Ilt~code--O) then call com-.err-.(code M"Choosing ma's');
12, call dsl-.Sdl.scope-.all(dbil.code);

bLit(code=-O) then call com..err_..code,deleting scope on protect");
call dsl-Sclose~dbil~code);
it(code^-O) then
do; call com-.err(code-Oclosing protect");
s top;
end;

put skip list(u"Vhat appropriation?,");
get list(appro)S
118 put skip Ilst(flow many years of cost would you like to consider?"l);
get list(nper)l

do i=1 to nperl
put skip list("Enter year, budgetTM);
get list~nyr(i),b(i));
end;

If(dec^-5) then
do; dataoase=path ::suJbmodelf
call dsl-.Sopen(database.dbi, I code);
it(codeC-O) then

do; call com-err-jcodeo."opening database");
stop S

42

relationdb:Arp.Y:ala;
call dsl...Sset..scope(dbichar,2O,reltion,I,O,code)I
1t(code'-3) then call coc err-..code,"settinq scope on database");
end;

ngr=Oi
exp8aexp1~srelation::exp28:exp38:exp5;
call dsl-Sretrieve(dbi~exp8,subma~appro.Pe~code)g
If (code--O) then

dot call corn...rrcode,Jlno pe");
Aut skip edit(4No pe was found for mission area 'A,ma," with approprlation"l.appro
"Iudifferent mission area and appropriatio'.1A2=different aopropriation','A3-sto
col (I),a~co! (1),a);
get list(dec)i
It~dec=1) then go to 11;
if(dec=2) then go to 12;
else go to 181
end;
do while(code=O)1
ngr=ngr+fl

acp penum (ngr)pe;
call dsl-Sretrieve(dbi,-'-another'%subfa,appro~pe.code);
end;

nvar=Oi
exP7=expI :-relation;:exp41
put skip list('AThe followin~j pe's and alternatives h~ave zero fu'ndi- for th'e Spec

do i-I to ngr;
lf(I-ngrfl then go to 161
jj=2;
flaqI ,flag2=O;

call dsL.Sretrieve~dbi.expi,pe,appro~pealt,yrl ,yr2,yr3,yr4,yr5,yr6,yrl.code);
if(code--O) then
do; call com..err..code,Nretrieving cost data"');
go to LI;
end;

call dcosts
if(asurn=delta) tnen
do; put skip list~pe,pealt)l

))tlg=I

end;
else

do; nyar-nvarlt
call cost;

I ~var)i1;

progal t(nvar)-peal ti
end;
do k-Jj by 11

___all dsl.Sretrieve~dbi.1-another'pe,appro.pealt~yri,yr2,yr3,yr4,yr5,yr6,yr/
f~(c ode-U)then go to 112;
call dcost;

43

if(dec=5) then
dot do 1=1 to nperl

nyr i)=O;
b(i)=O.O;
end;

1o to Ili

188 call dsl-$dl-.scope.a11(doi~code)l
call dsl....close(dbi,code);
Lf(code^=O) then call com-.errcode.,"closing database");
stop;I

dcosts proci
asurn=0.O;
do 11.1 to nperl
ny-nyr(1ii-789
lf(nyzl) then asum~asum~yr1;
else Lf(ny=2) then asuma~asum~yr21
else 1f(nyz3) then asumaasum~yr31
else lfiny=4) then asumnasumn+yr41
else Lt(ny=5) then asummasum~yr51
else if~ny=6) then asuin-asum+yr6;
else aswai-asum~yrll
end;

end dcosti

costs proc;
do i1=l to npers
ny-nyrC ii)-7bi
if(ny=)) then cst(liinvar)-yril
else if(ny=2) then cst(Ii,nvar)=yr2i
else if~ny=3) then cst(ii,nvar)-yr3i
else lf(ny-4) then cst(jiinvar)=yr41
else if(ny=5) then cst~ii,nvar)-yr5;
else if~ny-6) then cst(ii~nvar)=yr6i

e lse cst~ii,nvar)=yrl;endi
end cost;

output$ proc;
dcl exp3 char(JO), exp4 charC 153), title char(25),
rank char(4), comment charC3O), exp'l char6 171),
alt charC2), du'mmy char(l),exp6 char(lO)i
expoul"-range (d m;
exp3sh'-range (p 11
exp4zO)-select p.yrl..dol p~yr2..dol p.yr3-dol p.yr4..dol p.yr5..dol p.yr6.dol p-yi
M1p.commenti-where (C(p.pe - V.) & (p.appro - .V.)) & (p.dp w .V.))d;11
put skip edit(mi.Type In any character, reset page, anid carriaereun,
"After each page has finished printing, repeat step I.40)(a,col I),a)l
get histidurnny)i

indexn il-I)/6+1;

44

if(asurnc=delta) then
do; k=k-1;
put skip list(pe~pealt);
end;

else
do; nvar=nvar+l;
igr (nvar)=i

60 1lev~nvar)=k;
progalt(nvar)=pealt;
call cost;
flag2=Is
end;

end;
1128 if(flag1=1 & flag2=O) then

do;
do Jji to ngr-1;
penum(j)=penum(j+I)i
end;

ngr J-ngr;
ngr=ngr- fl
i-i-I;
end;

13tendi
16' call ram~allocate~cst~nper.ngr,nvar.ilev,igr~b,rseed~nyr,sun,zwdecjs,ng, Jl

call output;
call gph$graph(init~cst~nper,jsongr,nvar,ng,nyr,zw~jl~xI~yi);
put skip edit(I"Select one of the followingil,,hIditferent databaseu,M2-different

180,'3=different appropriation"',-'4=different budgets for years currently considered",
05=different years of cost data",116=stop"l)Ca,col(I),a,col(I),a~col(I),a,colCI),a,
get list~dec);
lf(dec=3) then go to 12;
if(dec=1 dec=2)then

do; call dsl-.Sdl.scope-.all~dbi,code);
call dsl....cose(dbi,code);
lf(code*=O) then
do; call coli-err-.(coe,"closing database');
stop;

If~dec-1) then go to 14;
else if (dec=2) then go to 15;

end;
if(dec=4) then
do; put skip list(41Enter number of years with new budgets");
get list(nchange);
do 1=1 to nchangel
put skip list(11Enter year, new budgets')l
get list~ny~budget)s

20o n-ny-78;
5n) -budg e t

end;
go to 16;
end;

45

indlI6;
If~irem-=O) then IndlI=rem;
npe=O;
put skip(2);
exp7=exp3 ;:relation: ;exp4;

2 do 1=1 to index;
put skip edit("'***SECREf***","Page"l.i)(co1(4O),a,skip,col(i5),a,fC2));
put skip editCI'Allocation report of mission area ",suo~lna,' using ".,na," datall)'
put skip edit(dCost in thousands of dollars~l)(col(30),a);
IndexI =6;
if~i=index) then indexl=indl#
do 11=1 to indexi;
npe=npel;.
pe~penu-m(igr(js(npe)));
altprogalt(Js~npe));
call dsl...Sretrieve(dbi,la"range (c char) -select c.pe-title-where (Cc.pe=.'d.)
pesubia, title~code)l
if(code'=O) then
dos call com-err(code'returning pe"l);
go to 113;
ends

call dsl-$retrieve(dblexp7.peappro~altyrl ,yr2,yr3,yr4,yr5.yr6,yrcomnent,
if(code^-O) then go to 113;
call surncostl
put skip(2) edit(OPEO"PE TirLE",APPRO DP M,MuCC)W.ENTSl)Cx(5),a,xr(I2),a,

40put skip edit~pe,title~approalt.comment)x(3) aC5),x(2).a(25),x(2),aC4),x(5)
put skip(2) edit(411979,J 198011,111981 ',Ali 912,198311.- 94I, I 985I,TKI,lqATSK

put skip edit(COCST'~yrIyr2,yr3,yr4,yr5,yr6,yr7,(zw(jJjs(npe))do jj1- to ng
put skipC2)i
1.13& ends

if(i-index) then put skip editCI'Total ,(su-n(I)do 1=1 to 7))(xCI),a,wC3),(7)f(1O
put skip edit("'***SECREr***'*)(skip(3),xC4O),a)I
put skip(2)s
get list(duimmy);

suvncosts proc;
sum(I)sum(I)*yr II
sum(2)-sumC2)+yr2I
sum(3)-sumC3)+yr3;
suvn(4)sum(4)+yr4;
sum(5)wsum(5)+yr5;
sumC o)zsum(6) *yr6 e
sum~(/)zsumC /)#-yr71
end suincost;

and outputs

ends

r 1226 1.585 0.736 55

46

B. Subroutine GRAPH

s ubroutine graphfi)rommon/comml/ stI (1),c(200,10),nper, ftaqqitack(1U)
common/comm2/ IstO),jL
tommon/comm4/ iqn(lo),inc(20O),cand(f,nynrlnvartLkeiLev(2(),ach(l)
rommon/cOMMlfli nrlnyr(l0),sum(7) ,Zw(5O,2.)
.,imension y(25,1fl),x(lO)o henelIt(25J, a(2001,yr(25.10)
dimension (75) v(21.)env(IC)
,xterna I xyplotlinit (descriptorshoxyplotlbui ld(descr iptors)
festernat xyptotipLot (descriptors),syptotlreset defaut ts(descrlptors)
character tit le.AP.sLabet*70,ylabet.?O9curve nae.40
character bena2,ocost*22.tiL.26,tpe'?7,tse*2~,z*'1,t e'22

* i is numler of sets of data to be graphed.
* nnr is the total number of proqram atternat ives.
* nper isth number of budget periods.
* n,! is the number of goals.
S it is tt~e number of selected pe alternatives.

x it) is the total cost of the solution for strategy 1
* tenetitlm) is the benefit of the solution to task m.
* yrli~j) is the cost if the ith soLution in the ith year.

y y(i oj) is 'enefit of Ith %trateqy to ith goaL.

* smf) is th e cumulative cost of current strategy for budget period 1t i=197.
z z'i,) is L~enef it to t h godak of it h variablIe, i =lvnwdr j =long.

yr(t~.1)=O.O
2 continue

* compute total and yearly costs for solution.
.10 S tl 1nper

Xl * 1)= s(j~l *c (1sf i ,

continue

writ.(c,6) x414l)
S format(" 80lhe total cost of the solution is",f 12.2)

* compute task benefits of solution.
10 10 m:1,nq

.10 Aii =1.51

1 continue

'o 11 m l.nq
writ (6,12) m~yfmIJ1)

!I ontinue'
1" form,.t f , x, benefit to tdsk"oi',l =0911.2

print ' o you want the output from this strategy
saved for graphs? Please answer yes or no."

re~o 45220) answer
2..fn f 0r m.,t (.1)

iffanswer.eq. Onow) no to 1(100

niI n Q1 #) I.

47

* compute sum of benefits for this strategy.
d0 I,# i:1,flo
yE nrq Ij) y (nq1) *y(ij)

14 continue

print oleo you want to generate more data before constructing graphs?'
rCedE 5.220) Answcr
itt inswer *eq. OyesO) go to 1000

continue
print *"Io you want any graphs of total solution Costs summeO over

alE. years vs. benefit of solution to individual tasks?O

redd(5920) answer
2 forM,,t~o.!)

if(,onswer .eq. bnow)no to Irl
print ,ey in index for the task.'
read (59)1

rio, 27 L=1.1
r E.) -y Ci ,L

21 continue

it -(f 930) t)*I1)
3 form~t(".*solution cost data-130(112.2,2%))

writt-(b 931) (y(iL)%t71,l)
31 format(" ,9sotutiol benefit data,930t112.292m))

.,z=,TOTAL SOLUTION COST vs. BENEFIT FOR TASK"
encodie~tit Le*35) zzii
f ore .t a40i 3)
t,en="fienefit to task"
encooe(ylabet,32) benoi

x~abet="Totat solution costlin millions)"
call xyp~totSinit g2titLe.iLabeL~yLabeCL L
caLL xyptotlreset.defauts(0,0.secreteolt' 0010.0* "*ItL
call xyptot~buitd(1,K.Z9V0l. 0019,t)

Call typtotiptot~tL)
1 0 continue

nio to 19

I continue

print ".o you wint a graph of total benefit vs. total cost for each strateay'l
readE5,20) answer
Vif nswer .eq. *no") go to 2016

z Cl): y CnoI ,k)
110 continue

writ (6,'CI) (()L1
writ',,3*1) yn1LL.l
tittt-"TOTAL SOLUTION rcOT v'. TOTAL PFrF1'"
utab L:"'otat solution cost~in milLions)"
'-.beL"erief it"
cALI xyiltotlinit .2.titteevuLbCL *vabeL, IL)

call Nyptotinuit-ifJox,?.fl1" 0919ML

48

cal xLL yl-ot pto t (L L)
2'F continuf

;11 continuo
print 9" o you want any qraphs of cost of indiviouaL budget periods

v,. individual task benefits?"
read(nq2n) answer
iff.,ibwer *eq. "now) ao to 3P1
print 9,ey in budnet period desired.*
readtb,) i
print .*Oey in task benefit index.*
read('),) n

writt 46,211) ign
211 format(" midTo be plotted is a a graph of cost of yedrmo 131"

vs. benefit to taskO9i394.*

.10 214 k:1.1
7(k) y Cn, k
v Ck) yr Ii k)

214 continue

writ"(6 931) (y~nqt)qL=1,j)
tit t
xtabeL:"
costz"Cost of year.
encodeC ziabeL .232) costsi

232 form. t(a12qi2)
t,enz"Penefit to task"
encodeCy Labs 1.233) bengn

233 form;,t(al5gi!)
tte:"COST OF YFAP"
encode Ct iL,234) tt i,

tse=" vs. HFNFFIT TO TASK'
enrooeftpe2't5) tse~n

?35 form lt(a2D0i3)
entodelt Itte*236) t iLotpe

236 form-t (al 5,82)
call xyrtLottiit(2,tit teextabeloylabetetl)
call xypLotlresetdefauts(COnfl.secret",1," 090,10.09" "OIL)
call xypLotSruild(tqv~zqO1," S, 1 9 I)
call xyptotlptot(IL)

17r continue

I 1 ontinur

print 9-o you wint qraphs showing cost of strteny for edch budget p.,riodj?*
read(15.,r) answ-r
if I nswer.eq. ano") no to *'1

--o 311 i:1,nrer
w(i)=fto-t(nyr(i))

511 Lontinue

u laI,et:*Iuudnet Prriod"*
ylabeL:"Cost*

49

z2=%COST vs. BUDGEFT PERIOD FOR SIRATEGY"
do 175 n:1.j
do 320 1z1anper

3,O continue
enQicae(tftjr*325) zzn

3' lorm~t (435,i 3)

c;,tt xypictsinitI2.tit Lesxtabels'tabetLU)
cajtt xyp~otiresetdefautts(0,rJ0,~e~utret.1lo" 0%,0il0,0* "ot
cat(. xyptotltbuitd(nper~vz9601, 0*is((l
CAL xyptotsplot i'lk

175 continue

4 1 continue

citt xyptotlulone4
:fl

1 00 continlue

r tLose (' I,

1.. Ir'r r r)urfd)RrYP AtAI)>f I rv~treort ran 1030001

50

RESOURCE ALLOCATION METHODOLOGY

FOR AIR FORCE R&D PLANNING

Volume 4: Computational Performance of RAM Programs

AgI

CONTENTS

Volume 4

Page

I. INTRODUCTION 1

II. COMPUTATIONAL TEST RESULTS 3

A. Test Plan 3
B. Test Results 4

TETPROGRAM OPERATION 15
III. TESTPRGAOEAIN.....................1

A. Test Problem Generation 15
B. Test Problem Solution 17

1. Run Specifications for the Test Program. 17
2. Representation of Decision Variables . . 22

ii-

iii

I. INTRODUCTION

This volume is one of four that document ANSER's develop-

ment of R&D resource allocation methodology (RAM) for the

Director of Program Integration, AF/RDX. Volume 1 provides

an overview of the work and its applications. Volume 2 de-

scribes the RAM technique and how to use the general-purpose

computer programs that incorporate it. Volume 3 describes

how to use the interactive computer program developed for use

of the RAM within AF/RDX, and Volume 4 describes the way in

which we tested its computational performance. Each volume

emphasizes some particular aspect of our research and can be

read independently of the others.

In this volume, we describe the results of our test program

and document the way we conducted the tests. Chapter II con-

tains our test plan, test results, and the inferences we can

make from the results. In Chapter III, we document the pro-

cedures we used to make the tests. The results are readily

understandable, although some knowledge of statistics would be

helpful in understanding how we made inferences from the test

data. The test procedures are of narrower interest and are

documented primarily for our use in any further testing. They

may be of some value, however, to others engaged in similar

tests.

The primary reason for testing, other than to find any

mistakes in the software, is to verify that the computer

programs can handle the problems likely to be encountered.

Capability is measured by determining the accuracy the program

can achieve and the computer resources it requires as a function

of problem size and complexity. We are satisfied that RAM/VM

and RAM/GP (as defined in Volume 2 of this report) provide an

excellent capability for routine use in the problems that

are likely to occur in AF/RDX. Both programs have also

performed well in other applications (see Volume 1). However,

we still do not know all the limits of this software, since

the cost of determining them would be prohibitive. Evaluation

is difficult because we know of no other similar computer

program that will accomplish the same tasks. Consequently,

we can only compare the results of our work with the results

of commercially available programs, which have less capability

and must use simplified test problems. To achieve a higher

level of confidence would require a substantially more

expensive test program. We believe we have achieved an

acceptable level of confidence with the testing done.

2

2

II. COMPUTATIONAL TEST RFSULTS

A. Test Plan

After running the resource allocation algorithms on the

Multics, we decided to formulate and carry out a test plan

to evaluate the computer programs. The testing process had

several goals. First, it was to verify the logic of the

software. Second, the testing process was to define any

limitations on the size or complexity of the problems that

the programs could be expected to handle. Finally, it was

to define conditions under which one programmed algorithm

would be preferable to another.

The test plan used the Control Data Corporation's (CDC)

APEX package,* a linear programming package that can solve

integer programming problems. Unlike our resource alloca-

tion programs, the APEX cannot perform goal programming.

However, because we knew of no other suitable alternative,

we chose APEX as the standard against which the performance

of our programs would be measured. We therefore did not

use the goal programming capabilities of our programs.

The testing procedure consisted of running randomly gen-

erated problems in each of several problem sizes for each of

our RAM programs+ and the APEX. The test problem size was

the number of decision variables (alternatives to be con-

sidered in the resource allocation) for a problem. We

devised random problems by using a random number generator

to supply coefficients for problems with a specified number

of decision variables. Then for each trial problem, we compared

* Hereafter, we refer to the package simply as APEX.
+ We also used our MIP2 program (see section II.B), but

since we dropped the program partway through the testing
it is not considered a significant part of the procedure.

3

and evaluated outputs for each of the RAM codes with those

for APEX. We drew our conclusions from a statistical analysis

of the results as well as from objective qualitative analysis.

Finally, we tried to find standard test problems used by the

operations research community against which to test the RAM

codes, but we were not successful.

We encountered two principal difficulties during the testing

process. First the use of APEX constrained the testing because

it could not handle, at an affordable cost, problems of the size

needed in our test procedure. Instead of comparing the results

of our programs with APEX results for problems involving 100 to

300 decision variables, we had to limit comparisons to problems

with less than 50 variables. Even for the smaller problems, APEX

could not guarantee an optimal solution, but rather a solution

within several percent of optimun. The second difficulty was

the lack of a standard against which to measure goal programming.

We are not likely to resolve this problem without development of

additional independent goal programming algorithms.

B. Test Results

Three RAM programs were evaluated in the tests: RAM/VM,

RAM/GP, and MIP2. M1IP2 was our early experimental version of

the resource allocation methodology, which was based on a variant

of a simplex linear programming algorithm. Although this model

will not be used in the future, partially as a result of these

tests, the results are included here for comparison. RAM/VM

and RAM/GP combine elements of goal programming and linear 0-1

programming and use the direct solution technique described in

Volume 2. RAM/VM seeks the resource allocation that maximizes
the overall benefit received subject to resource constraints.

RAM/GP seeks the allocation that minimizes deviations from a set
of specified, quantitative objectives. Both use a priority system
for optimizing classes of objectives.

4

Table 1 shows the results of the trials of the RAM/GP,

RAM/VM, MIP2, and APEX programs. For each trial, the same

randomly generated problem was run on each of the four pro-

grams. On three occasions, the APEX did not obtain a solution

within the specified time.

The column labeled "Percentage of Optimum (APEX)" indi-

cates within what percentage of optimum the APEX solution was

guaranteed. In Trial 5, for example, the best APEX solution

found is guaranteed to be within 5.89 percent of the value of

the objective function at the true optimal solution. As a

consequence of this, the product of 1.0589 and the objective

function value (1,363.428), or 1,443,734, is an upper bound

for the value of the objective function evaluated at the actual

optimal solution.

Note that the MIP2 program rarely reached a solution,

returning instead a message that the program had been unable

to find a feasible solution. This inability to find feasible

solutions is caused by the inability of the program to maintain

required solution criteria for each interaction. It does not

indicate that the problem had no feasible solution. We had

suspected this problem before testing but had not realized its

extent until partway through the testing procedures. When the

MIP2 program did find a solution, it matched those found by the

other programs. However, we decided that the extent of MIP2's

inability to find feasible solutions warranted dropping it from

the testing plan.

We applied the Wilcoxon Matched-Pairs, Signed-Rank test

to the data in Table 1. We used this nonparametric statistical

test to compare the results that RAM/GP and RAM/VM provide with

those provided by APEX. The advantage of the nonparametric test

for paired differences is that it does not require the assumption

5

TABLE 1
SUMMARY OF TRIAL RESULTS

Value of Objective Function at Percentage
Trial Number Best Solution Obtained of

Number OptimumVariables RAM/GP RAM/VM MIP2 APEX (APEX)

1 12 630.952 -- 630.952 1.14Not
2 15 631.946 -- 604.211 9.50Run
3 18 1,461.984 1,492.763 1,492.703 Optimal

4 21 1,689.535 1,689.535 1,689.520 1,689.535 Optimal

5 21 1,380.276 1,380.276 NFS* 1,363.428 5.89
6 21 1,265.859 1,265.859 NFS 1,265.859 5.97
7 21 1,453.479 1,453.479 NFS 1,417.578 6.72

8 21 1,354.015 1,354.015 NFS 1,232.959 9.49

9 21 1,467.194 1,467.194 NFS 1,467.194 1.25
10 21 1,513.992 1,513.992 NFS 1,513.992

11 21 1,185.199 1,185.199 NFS 1,185.199 1.40
12 21 1,361.286 1,361.286 NFS 1,361.286 3.05

13 21 1,073.619 1,073.619 NFS 1,047.597 7.83

14 45 2,510.933 2,510.933 NFS 2,393.704 4.18

15 45 2,735.956 2,735.956 NFS 2,735,054 3.14
16 45 2,854.954 2,854.954 -- 2,869.605 3.54

17 45 2,584.174 2,584.174 -- 2,584.174 1.22

18 45 3,095.392 3,095.392 -- 3,095.392 1.19
19 45 2,339.578 2,339.578 --

20 45 2,220.971 2,220.971 -- 2,179.195 3.71
21 45 2,500.680 2,500.680 --

22 45 2,499.623 2,499.623 -- 2,622.231 0.42

*No feasible solution.

6

that the underlying population of differences is normally

distributed. The nonparametric test makes no assumption

about the population distribution. We could not divide

the trials into groups according to the number of variables

because the resulting data sets would not be large enough

to be statistically meaningful.

Table 2 shows the data for applying the Wilcoxon Matched-

Pairs, Signed Rank Test to the values of the objective functions

provided by RAM/GP and RAM/VM. The test is carried out in

terms of the paired differences, d = x, - x2 , where the d

values represent differences between two observations on

the same individual or object. In this case, the difference

is between the results obtained by two computer programs

given the same randomly generated problem. The absolute

values of the differences are ranked from 1 to n, with the

smallest difference being assigned the rank of 1. Each rank

is then given the sign (either + or -) of the associated

value of d. If there are ties in ranking, the mean rank

value is assigned to the tied items. If, for example, the

sixth and seventh ranked items are tied, a rank of (6 + 7)/2

6.5 is assigned to each. If the difference between paired

observations is 0, that item is dropped and the number of

differences reduced by one. Since Table 2, has 10 zeros in

the difference column, the effective sample size is 20 - 10 = 10.

As indicated in the last two columns of Table 2, the

sums of the ranks are obtained separately for the positive

and negative differences. These sums, Z ranks (+) and

F ranks (-), form the basis for the null hypothesis H0:

Z ranks (+) = E rank (-). Specifically, the null hypothesis

is that the positive and negative differences in the population

are symmetrically distributed about a mean of 0. The smaller

of the two ranked sums is called Wilcoxon's T statistic and is the

test statistic. Hence, in Table 2, the test statistic is T =

I ra. -) = 16.
7

TABLE 2
DATA FOR THE WILCOXON MATCHED-PAIRS, SIGNED-RANK TEST

Trial RAM/GP APEX Difference Rank Signed Rank
Solution Solution ofNumber X2 d = X - X2 d Rank (+) Rank -)

1 630.952 630.952 0

2 631.946 604.211 +27.735 4 4
3 1,461.984 1,492.763 -30.779 5 5
4 1,689.535 1,689.535 0

5 1,380.276 1,363.428 +16.848 2 2

6 1,265.859 1,265.859 0
7 1,453.479 1,417.578 +35.901 6 6

8 1,354.015 1,232.959 +121,056 9 9
9 1,467.194 1,467.194 0

10 1,513.992 1,513.992 0
11 1,185.199 1,185.199 0
12 1,361.286 1,361.286 0
13 1,073.619 1,047.597 +26.022 3 3
14 2,510.933 2,393.704 +117.229 8 8

15 2,735.956 2,735.956 0
16 2,854.954 2,869.605 -14.651 1 1
17 2,584.174 2,584.174 0
18 3,095.392 3,095.392 0
20 2,220.971 2,179.195 +41.776 7 7
22 2,499.623 2,622.231 -122.608 10 10

39 16

8

Table 3 gives the critical values of T. For sample size

N=10 at the 0.10 level of significance, T can be no greater

than 10. Note that Table 3 presents the maximum values T can

have and still be considered significant at the stated signif-

icance level. Thus, since the calculated value of T(16)

exceeds 10, we cannot reject the null hypothesis of identical

population distributions. Hence, we concluded that the per-

formance of RAM/GP and RAM/VM did not differ significantly

in the values obtained for the objective functions for the

trial problems. We reached the same conclusion when comparing

RAM/VM with APEX and RAM/GP with APEX.

The value of these results is obscured by the lack of

certainty as to whether APEX was achieving optimal solutions

for the trial problems. That APEX guarantees a solution

to be within a specified percentage of optimum does not mean

that the solution is not optimal. Nevertheless, except for

Trials 3 and 4, we cannot prove that the solutions are optimal.

Table 4 presents upper bounds for the value of the ob-

jective function at optimal solutions and the ratio of the

RAM/GP solution to the upper bound. For 21-variable problems,

the mean of the ratios is 0.973 with a standard deviation of

0.22 and variance of 0.0004. For 45-variable problems, the

mean of the ratios is 0.977 with a standard deviation of 0.019

and variance of 0.0003. The overall mean of the ratios is 0.975

with a standard deviation of 0.020 and variance of 0.0004.

Using this information, we can establish, for the overall set

of 22 samples, a confidence of 0.995 that 70 percent of the

sample distribution of ratios are between the values of 0.944

(minimum value occurring) and 1.007 (maximum value occurring).

We can establish a confidence of 0.95 that 80 percent of the

9

TABLE 3
CRITICAL VALUES OF T* IN THE

WI LCOXON MATCHED-PAI AS, SIGNED-RANK TEST

Level of significance for one-tailed test
.05 .025 .01 .005

Level of significance for two-tailed test
.10 .05 .02 .01

5 0
6 2 0
7 3 2 0 --

8 5 3 1 0
9 8 5 3 1

10 10 8 5 3
11 13 10 7 5
12 17 13 9 7
13 21 17 12 9
14 25 21 15 12
15 30 25 19 15
16 35 29 23 19
17 41 34 27 23
18 47 40 32 27
19 53 46 37 32
20 60 52 43 37
21 67 58 49 42
22 75 65 55 48
23 83 73 62 54
24 91 81 69 61
25 100 89 76 69
26 110 98 84 75
27 119 107 92 83
28 130 116 101 91
29 140 126 110 100
30 151 137 120 109
31 163 147 130 118
32 175 159 140 128
35 213 195 173 159
40 286 264 238 220
45 371 343 312 291
50 466 434 397 373

*The symbol T denotes the smaller sum of ranks associated with
differences that are all of the same sign, For any given N (number
of ranked differences), the obtained T is significant at a given level
if it is equal to or less than the value shown in the table.

10

TABLE 4
STATISTICS ON SOLUTION RATIOS

Number Percentage RAM/GP Statistics
Trial of RAM/GP RAM/VM APEX of Upper Upper for

Number* Variables Solution Solution Solution Optimum Bound Bound Ratio
(APEX)

1 12 630.952 -- 630.952 1.14 638.145 0.989

2 15 631.946 -- 604.211 9.50 661.611 0.955
3 18 1,461.984 -- 1,492.763 Optimal 1,492.763 1.000

4 21 1,689.535 1,689.535 1,689.535 Optimal 1,689.535 1.000
5 21 1,380.276 1,380.276 1,363.428 5.89 1,443.734 0.956
6 21 1,265.859 1,265.859 1,265.859 5.97 1,341.431 0.944 M = 0.9730
7 21 1,453.479 1,453.479 1,417.578 6.72 1,512.839 0.961 J = 0.0220
8 21 1,354.015 1,354.015 1,232.959 9.49 1,349.967 1.003 j2 = 0.0004
9 21 1,467.194 1,467.194 1,467.194 1.25 1,485.534 0.988

10 21 1,513.992 1,513.992 1,513.992 3.56 1,567.890 0.966
11 21 1,185.199 1,185.199 1,185.199 1.40 1,201.792 0.986
12 21 1,361.286 1,361.286 1,361.286 3.05 1,402.805 0.970
13 21 1,073.619 1,073.619 1,047.597 7.83 1,129.624 0.950

14 45 2,510.933 2,510.933 2,393.704 4.18 2,493.671 1.007
15 45 2,735.956 2,735.956 2,735.054 3.14 2,820.935 0.970 M = 0.9770
16 45 2,854.954 2,854.954 2,869.605 3.54 2,971.189 0.961 J = 0.0190
17 45 2,584.174 2,584.174 2,584.174 1.22 2,615.701 0.988 J2 = 0.0003
18 45 3,095.392 3,095.392 3,095.392 1.19 3,154.204 0.981
20 45 2,220.971 2,220.971 2,179.195 3.71 2,260.043 0.983
22 45 2,499.623 2,499.623 2,622.231 0.42 2,633.244 0.949

M =0.9750

J =0.0200

j2= 0.0040

*Trials 19 and 21 are omitted because APEX did not reach a solution.
tComputed by multiplying: 1.0 + percentage of optimum (APEX) x APEX solution.

100
Thus, for trial 22, 2,633.244 = (1.0042) x (2,622.231).

The occurrence of meaningful values greater than 1.0 among entries in this column is, by definition of upper bound,
impouible. Nevertheless, they occur. We do not know whether they are a result of roundoff error, errors in the
returned value of percentage of optimum (APEX), or of other causes. Since we did not know the cause of entries
greater than 1.0, we did not tamper with data by resetting the value of such entries to 1.0.

11

distribution of ratios are greater than 0.944. These values are

taken from standard tables of nonparametric tolerance limits.
1

These results indicate that a user of RAM/GP or RAM/VM,

can have a high degree of confidence that results from these
programs are reasonably close to optimum for problems involving

no more than 45 decision variables. However, we have no basis
for extrapolating these results to larger problems.

Figure 1 shows the average time used by RAM/GP, RAM/VM,

and MIP2 to complete a problem as a function of the number of

decision variables within the problem. The figure implies that

the RAM/GP program has a reasonable running time for problem

sizes of 200 to 250 decision variables. For RAM/VM, the run-

ning time would be considerably less for problems of the same

size. The sketchy data for MIP2 seem to indicate that this

program would be too slow to run very large problems.

The conclusions that we can draw from the test results
are reasonably clear. The RAM/GP and RAM/VM programs may be

used with confidence in problems that have up to 45 decision

variables and that do not involve any goal programming. The

results obtained may or may not be optimal, but they will in

all likelihood be quite close to optimal. The testing procedure

could not evaluate the optimization capability of RAM/GP and

RAM/VM for problems larger than 45 decision variables or for

those involving goal programming. The MIP2 program was found

to be incomplete and unsuitable for use.

IR. E. Walpole and R. H. Myers, ProbabiZity and Statistics for
Engineers and Scientists, 2nd Ed., New York: MacMillan Pub-
lishing Co., Inc., 1978.

12

FIGURE 1
TIME USED TO COMPLETE

PROBLEM AS A FUNCTION OF PROBLEM SIZE

260

240

200

Average CPU 160
Time Used

To Complete RAM/VM
Problem
(seconds) 120 RAM/GP

80

40 MIP2

0
0 20 40 60 80 100 120 140 160 180

Number of Decision Variables

Unfortunately, we could not meet all the test program

objectives. However, even the limited results obtained are

useful in developing some confidence in the programs and reason-

able expectations for their performance.

13

III. TEST PROGRAM OPERATION

A. Test Problem Generation

The problems generated for the test program took the

following form:
NG

Minimize: Z = E wjn.
j=l

Subject to: NVAR
r Cim X. < Bm m = 1,NPER

i=1

NVAR
E a.. X. + n. > A. j = 1,NG

i=l a i

Z X. < 1 k = 1,NGR
X.CGR
1 x

X. E {0,11 Vi i = 1,NVAR1

n. > o V. j= 1,NG3 - 3

An input generator was developed that created a set of

pseudorandom numbers and formatted them to be used as input

data by RAM/VM and RAM/GP. The input generator created a
"problem" based on a set of given parameters and a "seed."

The seed,* which was given a unique value for each problem,

was the basis for the random number generator. The parame-

ters for the input generator were the number of (a) 0-1

variables (NVAR), (b) goals (NG), (c) mutually exclusive

groups (NGR), (d) priority levels (NP), and (e) time periods

and values for Bm (m=,NPER). The values for A. (j=l,NG)

were based on the value of the parameter, NGR (for most test

problems, Aj=119NGR). The random number generator provided

the values for the coefficients Cim and aij.

*For an explanation of the use of "seed" numbers in generating
random numbers, see Thesen, Arne, Computer Methods in Operations
Researoh, New York: Academic Press, 1978.

15

PeIUM PAZ BLANE-O F11MW

All test problems had four goals (NG=4), one priority

level (NP=l), four times periods (NPER=4), and three 0-1

variables in each mutually exclusive group (therefore,

NVAR=3*NGR). NVAR and NGR were varied during the test program

that determined the size of the problem. Unique sets of co-

efficients (Cim and A.) were generated for each problem.

Within each problem size, the values for B were also varied.m

Table 5 shows a sample problem created by the input generator.

TABLE 5
SAMPLE DATA CREATED BY INPUT GENERATOR

6 4 1 4 2 11 1 1 1 1 1 1 1
92.48C 20.398 9.636 64.670 32.761 35.364
57.644 21.867 49.860 79.290 90.B94 92.023
79.913 90.833 27.228 44.428 2.967 36-395
7.520 38.274 44.577 17.664 56.538 88.691
1 1 1 2 2 2
1 3 1 2 3

3C.CeO 45.CCC 35-COC 4C006
4Z.C17 28-396 13-482 8-219 92.480 2C.398
9.C36 64.67C 32.761 35.364 57.644 21.867

49.36C 79-29C 9C.894 9&.023 79.913 9C.833
27.228 44.42.8 2.967 36.395 7.520 38.274
233.CCC 238.00C 238.000 238.CCO

16

Because the input generator created the problems in a

format compatible with RAM/VM and RAM/GP, we had to develop

preprocessors (reformatting programs) to input the same

problems to MIP2 and APEX. These preprocessors read in the

data as created by the input generator and reformatted it to

be compatible with MIP2 and APEX. Table 6 shows the data

provided in Table 5 as reformatted for APEX.

Listings of the computer codes that generated the data

and reformatted them are available from ANSER. The codes

used were implemented on the CDC system. Minor changes

have been made in the coding to make it compatible with the

CDC system and to ensure that the problems generated for APEX

were the same as those generated on the Multics system for

RAM/VM and RAM/GP.

B. Test Problem Solution

APEX is a commercially available optimization program

developed by CDC for use on their operating systems. During

the test program, we used the APEX Mixed Integer Programming

option. This option uses a branch-and-bound algorithm to

solve the mixed integer problem.

1. Run Specifications for the Test Program

We ran APEX as a batch job and submitted the problems

using either a "single solve card" or a "control program."

Examples of the input files for each are shown in Tables 7

and 8.

*All development and applications of RAM programs were done
on the Multics computer system as installed on the Air Force's
Honeywell Series 68/Level 60 computer.

17

ii

TABLE 6
DATA FORMATTED FOR APEX USE

A. 3cft1u
A. AC1-.,
I IS05

L 2(

CCLUM~~3. S31,PAAG 3:74

1 COL I CF&U 92:.6 5COL 2CRO 9c 2.69
ICL 2cr 61 764SCOL 3 c Rr. 2.967

ICCI. 6CFi01, 7.2 COL I A l() : 92.48C

ICOL IA7IOU 42.217 5COL 2ARCU 57.664
ICOL 1.A Ko 1 9.C36 SCOL 3AR0% 79.913
SCOL 3AF.Gf 49.6 SCOL AACI 7.52C
ICCL 6Al~Ci 272Z 5COL 2S ICo
ICGL IS05 I*cco 6COL ICRCV 35.364

2COL lcpGrli 20.398 6COL 2CF.V 92.CL3
2CGL 2CROIC 21.867 6COL 3CFc, 36.395
2201. 3cFol 9C.333 6201. 4c1, 88.69)
2201. 4~CFXA 38.274 6CGL If~G 2Q-398
2201. I A Kul 28.396 6COL 2 1 F0 % 21.867
2CCL EAR" 64.67C 6CQL 35.tGV 9e.533
2COL 3A71CV 79.299 6COL 6A.C. 38.274
2COL 4AP.Cil 44.628 6COL SSS .c22
2201. 3505 I.Ccc 2SC 2s25 3.006,
3COL I Cr0. 9.036 1LV AF.~ 1.220 Db. j L3hc I Cre
3COL 22fi01 49.86C 2L2.V .1A,1. l.022 Lb~d1.'A2 I.Cee

3COL 3CROU 27.228 ZLE 3 A.C. 3.c22 &L..4UW.C I.9e
3C2.L 4 c R0v a46. 7 7 4LLV 41.cl 3.C22 LU. 1.c 3.9ce
3201. IARGL 53.618Z l
3CCL 2A%.1.' 32.7biPA I CRGI 313.002
3COL 3ARCU 90.894 Mhs 2CKQV 4S.222

3COL 4Akp.c. 2.961 Pit S 3C.Cl. 35.CCC
3201. I50S 3.220 MNS 6C1FO" '..0
ISc 350S t.t.cc ms ISOS 3.222
4C02. 1CA 641.67C mis RSOS 3.0cc
ACCL 2Cp~cl 79.29C 0 Is A.Fcl 238.CCC
6CCL 3 cFo 1 44.628 Rms 2Ar.01 238.2Ce
6201. 4ClR0V 17.664 ms 3ARtCU 238.CCC

ACOL 3AR. 8.219 RIIS 45,PW 238.CCC
4COL 24ROV 35.364 bt.L
4201. 31AW' 92.923 S3 LIITS ICOL s
4201. AA3r& 36.395 SI LIMI1TS &COL 2!C
4COL 2SLS i.0ce L1T

18

TABLE 7
SAMPLE INPUT FILE FOR RUNNING APEX

USING "SINGLE SOLVE CARD"

.1,9

TABLE 8
SAMPLE INPUT FILE FOR RUNNING APEX

USING "CONTROL PROGRAM"

COICL /dUL
£L1I L IT4L2,FL.
CCI "C UJSLi.(SI6UTE,ASLCC,2.L)

CC 13 LLT., TiF L I = Tf/FL

LL145 LLFI DL)TL. I.
LC I LC TF L L, CC L.
CC16C -LLUCL.-.
CCI7C AI7XCC,$i=TLr.T)
CC 1C DAYF, LL, LAY,
C*C2.2C L 1FLAfLLAY,

C23L L;.:IT.
C24 C LP.YFl LL, LiY.

CC5C FFLACLp LAY,

I NFUT

SLT
SLT hi 6 LS L T -1 la SJ

S L.T Il.L LL
SLLLCT
SLT EFoLL.NL -4 64C,
CRAS,.

OUTFUT FULLL T LlIF
L%1 T

CCZ7C /LGF
g, 7£/LoF

20

APEX can be submitted using the "single solve card" for

most problems. The solve card allows the user to set the

direction of optimization (MIN or MAX) and select any of a

number of options. Line 00170 of Table 7 is an example of

the "single solve card." "MIN" informs APEX that the problem

being submitted is a minimization problem. "MIP" directs

APEX to use the mixed integer programming option. The "SOF"

option directs APEX to write all output into a direct access

file, defined here as TEMP. The "RL" option establishes a

resource limit that, if exceeded, would cause APEX to dis-

continue processing and exit. Two additional options that

should be mentioned are "OPT" and "SV." "OPT" directs APEX,

when using the MIP option, to find and prove the optimal

solution. If the "OPT" option is not included as an argument

on the solve card, APEX will terminate the search for an

optimal solution after finding a solution within 10 percent

of optimum. "SV" will direct APEX to save all the data re-

quired to restart the problem where it was terminated. Other

available options are described in the APEX Reference ManuaZ

furnished by CDC.

Use of an APEX "control program" allows greater flexi-

bility and control of the APEX solution system. The example

in Table 8 shows one way in which it was used during the

test program. "RPOBBND" is the lower bound on the objective

function and places a bound on many of the branches APEX

must explore in solving the mixed integer problem. The

solution to the problem, as-determined by RAM/VM and RAM/GP,

was input in the "control program" as "RPOBBND" to limit the

number of branches APEX needed to consider. For minimization

problems, the value of "RPOBBND" is complemented (-). The

"control program" also selects the mixed integer option

(MIXINT) and directs APEX to write the output into a file,

defined here as TEMP.
21

-. -. ~.

2. Representation of Decision Variables

We used tuo approaches in setting up the problem in the

proper format for APEX to handle the constraints:

Z X. < 1 k=l,NGR
XieGR 1 -

and Xi C {0,l) Vi i=l,NVAR

One approach was to declare the 0-1 variables as bivalent

variables; the other was to use special ordered sets. When

using bivalent variables, all 0-1 variables must be declared

in the bounds section of the input data. The equations

establishing the mutually exclusive group must be of the

less-than-or-equal-to type, as declared in the rows section.

To use special ordered sets, an additional variable must be

added to each mutually exclusive group. (These added variables

are labeled lSC and 2SC in Table 6.) The constraint then

becomes an equal-to type, and APEX must select exactly one

variable from each mutually exclusive group. The appearance

of the added variable in the solution means that its associ-

ated mutually exclusive group is not represented in the

solution. Although use of the special ordered sets requires

that additional variables be included in the problems, we

found that APEX generally solves the problems more efficiently

when they are structured as special ordered sets than when

they are set up with bivalent variables. Therefore, most

problems solved during the test program used the special

ordered sets.

22

PRIMARY DISTRIBUTION LIST FOR TDN 80-1

ORGANIZATION NUMBER OF COPIES

OSD/AE (Lt Col J. Gross) 1

AF/RDX (Brig Gen M. Roger Peterson) 1
(Lt Col F. Gerken) 3

AF/SAMI 1
OSD/PA&E (Capt B. Berkowitz) 1
AF/RDP (Mr. G. Fisher) 1

ASD/ENASC (Mr. Larry Beasley) 1

AF/XOXIM (Maj E. Wilkins) 1

AFSC/XRS (Lt Col G. Hollobaugh 1

SD/YLXA (Lt Michele Focht) 1

DTIC 2

ANSER

Library 5

Reserve Stock 20

Master Copy (1)

SECURITY CLASSIFCATION OF THIS PAGE (Whim Date 1ere.d)

REPOT DOUME'rATON PGEREAD INSTRUCTIONSREPORT DOCUMEWA1ION PACE BEFORE COMP'.ETING FORM

1. REPORT NUMBER 12. GOVT ACCESSION 7 , 3. RECIPIENTS CATALOG NUMBER

TN 80-1 6;7- -

4. TITLE (and Subtitle) S. TYPE OF REPORT A PERIOD COVERED

Division Note
Resource Allocation Methodology for Air Force

R&D Planning s PERFORMING ORG. REPORT NUMBER
TDN 80-1

7. AUTHOR(.) 8. CONTRACT OR GRANT NUMBER?.)

G. Cooper, S. Adams, J. Clary, J. Perlis F-49620-77-C-0025

9. PERORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AREA & WORK UNIT NUMBERS

ANSER (Analytic Services Inc.)
400 Army Navy Drive
Arlinytn Viralnia 22202

II. CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE

Directorate of Program Integration Jue 1980
Headquarters United States Air Force 73. NUMBER OF PAGES

Washington, D.C. 20330 130
14. MONITORING AGENCY NAME A AODRESS(If difierent irom Controillni Of co) IS. SECURITY CLASS. (ol this ,epo-r)

Unclassified

15.. DECLASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of tll Report)

Approved for public release; distribution unlimited

"7 DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It dlterent from Report)

l8 SUPPLEMENTARY NOTES

19. KEY WORDS (Contlinue or reverse side If necessary rnd Identify by btnrk number)

rescurce allocation, heuristics, goal programming, vector maximization,
integer programming, R&D project selection, budgeting

20. ABSTRACT (Collnue o remvrrd *do If noecesary md Identify - btork number,-

Di3MA41.-9, ae Director of Program Integration, AF/RDX, tasked ANSER
to identify and develop a methodology for allocation of funds among Air Force
research, development, and acquisition programs. This report, which consists
of four volumes, describes work accomplished in response to that tasking
and discusses the resource allocation methodology that resulted. Volume I
is an overview of the work. Volume 2 describes the resource allocation
techniques and the general-purpose computer programs that incorporate it.
Volume 3 discusses how to use the interactive computer program developed for

DD IAN7, 1473 COITION O0' NOV, 6,1 OBSOLETE UNCLASSIFIED (over)

SECURITY CLASSIFICATION OF THIS PAGE (Wlen Do,& Enterej

UNCLASSIFIED
SIRCU111TV CLASSIFICATION OF T141S PAGS(Wheu Doe alegI.eQ

2 use of RAM vithin AF/RDX. Volumne 4 reports on tests made to determine
the computational performance of the methodology:,

UNCLASSIFIED

86CURITY CLASSIFICATION OP TwInS P&GROR ole m.In,.eo

